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The function of many  complex 
technological social and biological 

systems  
depends on the non-trivial interactions  

between  
interacting networks 



Interacting infrastructure networks 

Complex infrastructures are interdependent 
and a failure in one network can generate 
a cascade of failures in the Interdependent 
networks 

Buldyrev et al. Nature 2010 



Interacting Transportation networks 

  Transportation networks 
are another major 
example of interacting 
networks.  

Here  
blue lines represent 
short-range commuting 
flow by car or train  
the red lines indicate 
airline flow for few 
selected cities 

Vespignani Nature 2010 



Interacting and multiplex  
Brain networks 

The brain function is determined  
at the same time  
by  
the structural brain network  
and  
the functional brain network,  

Bullmore Sporns 2009 

  



Interacting   
Social networks 

Social 
networks 
are interacting  
and overlapping 
with profound 
implications for 
community 
detection 
algorithms   

Y.Y. Ahn et al. Nature 2010 



Interacting and multiplex networks 
In order to  

model, predict and control  
complex networks  

we need  to understand  
the effect of interdependencies between networks 

and  
we need to fully characterize  

the evolution and dynamics of  
the  

networks of networks 



Interacting networks 
•  Two or more interacting networks are formed by different 

nodes (ex. Power-grid network and Internet)  
•  but there might be complex interactions and 

interdependencies between the nodes 



Multiplex 

•  A multiplex is formed by a set of 
nodes that are present at the same 
time on different networks, 

•  A multiplex is formed by M layers 
(in the figure M=3) 

•  Each layer is formed by a network 



The airport network is a 
multiplex 

•  (a) Only links belonging to all airline companies are 
plotted 

•  (b) The combined network where only nodes of degree        
k>75 have been plotted 

•  (c) A major airline network 
•  (d) Low cost airline network  

Cardillo et al. Scientific Reports (2013).  



The in silico multiplex social social  
network of an online game 

•  In this online game 
agents can belong to 
different networks 
Friendship, 
Communication, Trade, 
Enmity, Attack and 
Bounty networks 

Szell et al. PNAS 2010 



Representation of a multiplex 
The straightforward representation a multiplex of N nodes 

formed by M layers is  
by means of the set of M adjacency matrices 

 with α=1, 2, … M and matrix elements 
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if node i and node j are linked in layer α
otherwise



Multiplex Models 

1) growing multiplex model 

2) ensembles of multiplex    



Class of network models 



Conditional average degree of a node  
in one layer  

(case of a duplex, i.e. two layers) 
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k1 degree in network 1,k2 degree in network 2 
P(k1,k2) probability that a node has degree k1 in one layer and k2 

 in the other layer 



Growing multiplex (duplex)  

•  GROWTH  
At each time a new node is added to the multiplex.  
Every new node has a copy in each layer and has m links in each layer. 

•  LINEAR PREFERENTIAL ATTACHMENT  
The probability that the new link is added to node i in layer α  
is given by Πα with 

and a,b     1. 
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Degree correlations 
•  Case a=b=1   Exact solution 

•  For general a,b solving in the mean-field  
approximation it can be obtained 

•  From the simulation results it is possible to conclude that the 
degree correlations are minimal in the a=b=1 case 
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Growing multiplex (duplex)  

•  GROWTH  
At each time a new node is added to the multiplex. Every new node has a 

copy in each layer and has m links in each layer. 

•  SEMILINEAR PREFERENTIAL ATTACHMENT  
The probability that the new link is added to node i in layer α is given by 

Πα with 

and a,b     1. 
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Degree correlations 
•  Case a=b=1 Exact solution 

•  For  a>0, b<1 solving in the mean-field  approximation it can be obtained 
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Class of network models 



Random graphs 

Binomial                  Poisson  
distribution                distribution 
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Statistical mechanics  
and  

random graphs 

Microcanonical  Configurations            G(N,L)        Graphs 
Ensemble           with fixed energy E     Ensemble  with fixed # of links L 

Canonical            Configurations           G(N,p)       Graphs 
Ensemble            with fixed average      Ensemble with fixed average    
                              energy <E>                                   # of links <L> 

Statistical mechanics Random graphs 



∏ ∑−Σ
=

i j
iji akGP )(1)(

1

δ

Microcanonical ensemble  Canonical ensemble  

Ensemble of network with exact     Ensemble of networks given expected  
 degree sequence     degree sequence 

∏
<

−−=
ji

a
ij

a
ij

ijij ppGP 1)1()(

Configuration model   Hidden variables model 
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Entropy of a canonical network ensemble with linear 
constraints 

Entropy of a microcanonical network ensemble with 
linear constraints con be found by the cavity method, 
in the configuration model for  sparse network limit with 
structural cutoff we recover the Bender and Canfield 
formula 
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Entropy measures can be 
used to assess the role  

of features  
for network structure  



Two schools with  
similar N,M 

    N1=1461     N2=1147 
 M1=.64        M2=.66 

But different 	

/N1

1/2=1.69      /N2
1/2=15.71 
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Multiplex measures: Overlap 
•  For two layers α and α’ of the multiplex we can define the  
    total overlap Oαα’ as 

•  For a node i of the multiplex, we can define the  
    local overlap oi

α,α’ 
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Uncorrelated and correlated 
multiplex ensembles 

•  A multiplex      can be seen as a set of graphs Gα in 
each layer a of the multiplex, i.e.                         

•  A uncorrelated multiplex ensemble assign to every 
multiplex a probability given by 

•  If instead   

the multiplex ensemble is correlated  € 

P(G) = Pα (Gα )
α=1,M
∏€ 

G
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G = (G1,G2,...Gα ,....GM )
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P(G) ≠ Pα (Gα )
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Overlap in uncorrelated mutliplex 
ensembles 

In every uncorrelated multiplex 
ensembles formed by sparse networks the  

global and local overlap are 
negligible 

G. Bianconi arxiv:1303.4057 (2013) 



Multilinks and Multiadjacency 
matrices 

•  Consider a vector 

•  A multilink        is the set of links connecting a given pair of 
nodes in the different layers of the multiplex and 
connecting them in a generic layer α only if mα=1. 

•   The multiadjacency matrices have  elements  
      only if there is a multilink          between node i and node j 

and zero otherwise, i.e.  
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Case of two layers 
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if node i and node j are linked in layer 2 and not linked in layer 1
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Multiadjacency matrices 

Constraints on the  multiadjacency matrices 
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Multidegree 

•  The multidegree     
is defined as 

•  In the case of two 
layers we have  € 
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Ensemble of multiplex with given multidegree sequence 
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Canonical network model for the correlated 
multiplex 
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Constructive algorithm 

For every pair of nodes (i,j) 

Draw a multilink 

with probability           , 

i.e. put a link in every layer 

where mα=1. 
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G. Bianconi arxiv:1303.4057 (2013) 
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  Entropy of a canonical multiplex ensemble with linear constraints 

Entropy of a microcanonical mutliplex ensemble with linear constraints 
con be found by the cavity method, if we fix only the multi degree 
sequence in the sparse network limit,  with structural cutoff we recover a 
generalization of the Bender and Canfield formula 
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Election model on  
multiplex networks 



Competing networks:  
the case of political elections 

We assume that each party 
is represented by a network. 

At the end of the election campaign 
each agent can be active at most 
in one network (he/she will vote for the  
corresponding party) 

The election campaign is described   
as a competition between the two  
networks. 



The election model 
•  The two layers are competing – on the 

election day, agents must be either active 
(green) in only one of the networks, or 
inactive (red) in both. 

•  At the election day an agent is voting for one 
party if at least one neighbor is voting for 
that party 

•  During the “campaigning” process, we count 
the number of voters that conflict with the 
criterion above with the Hamiltonian 
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The election model 
•  At the beginning of the campaigning process, voters are 

“undecided” with random opinions subject to change. 
•  Evolution of opinions is modeled by a simulated annealing 

process.  

As the election day 
approaches the temperature 
of the simulated annealed 
algorithm is reduced. 

H has multiple fundamental        
states, simulated annealing 
always converges to one of 
these at the election day. 



Phase diagram of the model 
Two E-R networks are considered with 
average connectivities  zA and zB. 
The size of the giant component of the 
percolating cluster in network A is plotted 
as a function of the average 
connectivities. 

Region(I):    SA=0, SB=0 
Region(II): SA=0 SB>0 
Region(III):  SA>0 SB=0 
Region(IV):  SA>0 SB>0 

In region III both political parties 
percolate in the population 

Halu, Zhao, Baronchelli and Bianconi EPL (2013) 



Connect and win 

We plot mA-mB, i.e. 
the number of 
agents that vote for party 
A minus the  
number of agents that 
vote for party B averaged 
over 90 realizations. 

 The  most connected 
party is the one that is 
more likely 
to win the election! 



Effect of the committed 
agents in the majority 

• The effect of committed agents 
in Region II ( zA=2.5 zB=4) 

• A small fraction (~0.1) of 
agents is sufficient to reverse 
the outcome of the election. 

Halu, Zhao, Baronchelli, Bianconi EPL (2013) 



Conclusions 
•  Many networks  interact, coexist and coevolve with 

other networks forming multiplexes where any pair of 
nodes can be linked by different types of interaction 

•  Modeling interacting and multiplex networks is only 
in its infancy and we need  to develop a new series of 
non-equilibrium and equilibrium models and to compare 
their outcome to real data. 

•  Critical phenomena on multiplex and interacting 
networks show new surprising physics.  
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