

Cambridge Networks Day
Cambridge, 7 May 2013

Statistical Mechanics of Multiplex Networks

Ginestra Bianconi

School of Mathematical Sciences, Queen Mary University of London, London, UK

The function of many complex technological social and biological systems
depends on the non-trivial interactions between
interacting networks

Interacting infrastructure networks

Complex infrastructures are interdependent and a failure in one network can generate a cascade of failures in the Interdependent networks

Buldyrev et al. Nature 2010

Interacting Transportation networks

Transportation networks are another major example of interacting networks.

Here
blue lines represent short-range commuting flow by car or train the red lines indicate airline flow for few selected cities

Vespignani Nature 2010

Interacting and multiplex Brain networks

The brain function is determined at the same time by
the structural brain network and
the functional brain network,

Bullmore Sporns 2009

Interacting Social networks

Social
networks are interacting and overlapping with profound implications for community detection algorithms
Y.Y. Ahn et al. Nature 2010

Interacting and multiplex networks

In order to
model, predict and control
complex networks
we need to understand

the effect of interdependencies between networks and
we need to fully characterize
the evolution and dynamics of the
networks of networks

Interacting networks

- Two or more interacting networks are formed by different nodes (ex. Power-grid network and Internet)
- but there might be complex interactions and interdependencies between the nodes

Multiplex

- A multiplex is formed by a set of nodes that are present at the same time on different networks,
- A multiplex is formed by M layers
 (in the figure $\mathrm{M}=3$)
- Each layer is formed by a network

The airport network is a multiplex

(b)
(c)
(d)

- (a) Only links belonging to all airline companies are plotted
- (b) The combined network where only nodes of degree k>75 have been plotted
- (c) A major airline network
- (d) Low cost airline network

Cardillo et al. Scientific Reports (2013).

The in silico multiplex social social network of an online game

- In this online game agents can belong to different networks Friendship,
Communication, Trade, Enmity, Attack and Bounty networks

Szell et al. PNAS 2010

Representation of a multiplex

The straightforward representation a multiplex of N nodes formed by M layers is
by means of the set of M adjacency matrices

with $\alpha=1,2, \ldots \mathrm{M}$ and matrix elements

$$
a_{i j}^{\alpha}=\left\{\begin{array}{l}
1 \text { if node } i \text { and node } j \text { are linked in layer } \alpha \\
0 \\
\text { otherwise }
\end{array}\right.
$$

Multiplex Models

1) growing multiplex model
2) ensembles of multiplex

Class of network models

- Growing networks:
- Preferential attachment

Barabasi \& Albert 1999,
Dorogovtsev \& Mendes 2000, Bianconi \& Barabasi 2001

- Static networks:
- Hidden variables mechanism

Bollobas 1979, Chung \& Lu 2002,
Caldarelli et al. 2002, Park \& Newman 2003

Conditional average degree of a node in one layer (case of a duplex, i.e. two layers)

Positive degree correlations
No degree correlations
Negative degree correlations
$\log \left(k^{2}\right)$

$$
\left\langle k^{1} \mid k^{2}\right\rangle=\sum_{k^{1}} k^{1} P\left(k^{1}, k^{2}\right)
$$

k^{1} degree in network $\mathbf{1 , k} \mathbf{k}^{2}$ degree in network 2 $P\left(k^{1}, k^{2}\right)$ probability that a node has degree k^{1} in one layer and $\mathbf{k}^{\mathbf{2}}$ in the other layer

Growing multiplex (duplex)

- GROWTH

At each time a new node is added to the multiplex.
Every new node has a copy in each layer and has m links in each layer.

- LINEAR PREFERENTIAL ATTACHMENT

The probability that the new link is added to node i in layer α is given by Π^{α} with

$$
\begin{aligned}
& \Pi_{i}^{1} \propto a k_{i}^{1}+(1-a) k_{i}^{2} \\
& \Pi_{i}^{2} \propto(1-b) k_{i}^{1}+b k_{i}^{2}
\end{aligned}
$$

and $\mathrm{a}, \mathrm{b} \leq 1$.

Degree correlations

Nicosia et al arxiv:1302.7126

- Case $a=b=1$ Exact solution

$$
\begin{aligned}
& P\left(k^{1}, k^{2}\right)=\frac{2 \Gamma(2+2 m) \Gamma\left(k^{1}\right) \Gamma\left(k^{2}\right) \Gamma\left(k^{1}+k^{2}-2 m+1\right)}{\Gamma(m) \Gamma(m) \Gamma\left(k^{1}-m+1\right) \Gamma\left(k^{2}-m+1\right)} \\
& \left\langle k^{1} \mid k^{2}\right\rangle=\frac{m}{1+m}\left(k^{2}+2\right)
\end{aligned}
$$

- From the simulation results it is possible to conclude that the degree correlations are minimal in the $a=b=1$ case

Growing multiplex (duplex)

- GROWTH

At each time a new node is added to the multiplex. Every new node has a copy in each layer and has m links in each layer.

- SEMILINEAR PREFERENTIAL ATTACHMENT

The probability that the new link is added to node i in layer α is given by Π^{α} with

$$
\begin{aligned}
& \Pi_{i}^{1} \propto a k_{i}^{1}+(1-a) \\
& \Pi_{i}^{2} \propto(1-b) k_{i}^{1}+b
\end{aligned}
$$

and $\mathrm{a}, \mathrm{b} \leq 1$.

Degree correlations

- Case a=b=1 Exact solution

Nicosia et al arxiv:1302.7126

$$
\begin{aligned}
& P\left(k^{1}, k^{2}\right)=\frac{\Gamma\left(k^{1}\right)}{\Gamma(m+1) \Gamma\left(k^{1}-m+1\right)} \sum_{n=0}^{k-m}\binom{k-m}{n}\left(\frac{2 m}{1+2 m+k^{1}-n}\right)^{k^{2}-m}(-1)^{k^{1}-m-n} \\
& \left\langle k^{1} \mid k^{2}\right\rangle=m\left(\frac{2(m+1)}{1+2 m}\right)^{k^{2}-m+1}
\end{aligned}
$$

- For $a>0, b<1$ solving in the mean-field approximation it can be obtained

$$
(a=b=1) \quad(a=0, b=1) \quad(a=1, b=0)
$$

$\left\langle k^{1} \mid k^{2}\right\rangle \propto k^{2}$

Class of network models

- Growing networks:
- Preferential attachment

Barabasi \& Albert 1999,
Dorogovtsev \& Mendes 2000, Bianconi \& Barabasi 2001,

- Static networks:
- Hidden variables mechanism

Bollobas 1979,
Chung \& Lu 2002,
Caldarelli et al. 2002,
Park \& Newman 2003

Random graphs

$\mathbf{G}(\mathbf{N}, \mathrm{L})$ ensemble
Graphs with exactly
N nodes and
L links
$\mathbf{G}(\mathbf{N}, \mathrm{p})$ ensemble
Graphs with N nodes Each pair of nodes linked with probability p

Binomial distribution

$$
\begin{aligned}
& P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k} \\
& P(k)=\frac{1}{k!} c^{k} e^{-c}
\end{aligned}
$$

Poisson distribution

Statistical mechanics and
 random graphs

Statistical mechanics		Random graphs	
Microcanonical	Configurations	G(N,L)	Graphs
Ensemble	with fixed energy E	Ensemble	with fixed \# of links
Canonical	Con	G(N,p)	Graphs
Ensemble	with fixed average	Ensemble	with fixed average

Networks with given degree sequence

Microcanonical ensemble

$$
P(G)=\frac{1}{\Sigma_{1}} \prod_{i} \delta\left(k_{i}-\sum_{j} a_{i j}\right)
$$

Ensemble of network with exact degree sequence
Configuration model

Canonical ensemble

$$
P(G)=\prod_{i<j} p_{i j}^{a_{i j}}\left(1-p_{i j}\right)^{1-a_{i j}}
$$

Ensemble of networks given expected degree sequence
Hidden variables model

Entropy of network ensembles

Entropy of a canonical network ensemble with linear constraints

$$
S=-\left[\sum_{i j} p_{i j} \ln p_{i j}+\left(l-p_{i j}\right) \ln \left(1-p_{i j}\right)\right]
$$

Entropy of a microcanonical network ensemble with linear constraints con be found by the cavity method, in the configuration model for sparse network limit with structural cutoff we recover the Bender and Canfield formula

$$
\Sigma=\log [x] \text { with } x=\frac{(2 L)!!}{\prod_{i} k_{i}!} e^{-\frac{1}{4}\left(\frac{\left.\left.k k^{2}\right\rangle\right)}{(k)}\right)^{2}}
$$

Entropy measures can be used to assess the role of features
 for network structure

Θ
 An independent measure

Two schools with similar \mathbf{N}, \mathbf{M}

解

$$
\begin{array}{ll}
N_{1}=1461 & N_{2}=1147 \\
M_{1}=.64 & M_{2}=.66
\end{array}
$$

But different Θ
$\Theta_{1} / N_{1}{ }^{1 / 2}=1.69 \quad \Theta_{2} / N_{2}{ }^{1 / 2}=15.71$

G Bianconi et al. PNAS 2009

Multiplex measures: Overlap

- For two layers α and α ' of the multiplex we can define the total overlap $\mathrm{O}^{\alpha \alpha^{\prime}}$ as

$$
O^{\alpha, \alpha^{\prime}}=\sum_{i<j} a_{i j}^{\alpha} a_{i j}^{\alpha^{\prime}}
$$

- For a node i of the multiplex, we can define the local overlap $o_{i}{ }^{\alpha, \alpha^{\prime}}$

$$
o_{i}^{\alpha, \alpha^{\prime}}=\sum_{j} a_{i j}^{\alpha} a_{i j}^{\alpha^{\prime}}
$$

Uncorrelated and correlated multiplex ensembles

- A multiplex \vec{G} can be seen as a set of graphs G_{α} in each layer a of the multiplex, i.e. $\vec{G}=\left(G_{1}, G_{2}, . . G_{\alpha}, \ldots . G_{M}\right)$
- A uncorrelated multiplex ensemble assign to every multiplex a probability given by

$$
P(\vec{G})=\prod_{\alpha=1, M} P_{\alpha}\left(G_{\alpha}\right)
$$

- If instead

$$
P(\vec{G}) \neq \prod_{\alpha=1, M} P_{\alpha}\left(G_{\alpha}\right)
$$

the multiplex ensemble is correlated

Overlap in uncorrelated mutliplex ensembles

In every uncorrelated multiplex

 ensembles formed by sparse networks the global and local overlap are negligibleG. Bianconi arxiv:1303.4057 (2013)

Multilinks and Multiadjacency matrices

- Consider a vector $\vec{m}=\left(m_{1}, m_{2}, \ldots m_{\alpha}, \ldots m_{M}\right)$ with $\quad m_{\alpha}=0,1$
- A multilink \vec{m} is the set of links connecting a given pair of nodes in the different layers of the multiplex and connecting them in a generic layer α only if $m_{\alpha}=1$.
- The multiadjacency matrices have elements $A_{i j}^{\vec{m}}=1$ only if there is a multilink \vec{m} between node i and node j and zero otherwise, i.e.

$$
A_{i j}^{\vec{m}}=\prod_{\alpha=1, \ldots M}\left[m_{\alpha} a_{i j}^{\alpha}+\left(1-m_{\alpha}\right)\left(1-a_{i j}^{\alpha}\right)\right]
$$

Case of two layers

Multiadjacency matrices

$$
\begin{aligned}
& A_{i j}^{10}=\left\{\begin{array}{l}
1 \text { if node } i \text { and node } j \text { are linked in layer } 1 \text { and not linked in layer } 2 \\
0
\end{array}\right. \\
& A_{i j}^{01}= \begin{cases}1 & \text { if node } i \text { and node } j \text { are linked in layer } 2 \text { and not linked in layer } 1 \\
0 & \text { otherwise }\end{cases} \\
& A_{i j}^{11}= \begin{cases}1 & \text { if node } i \text { and node } j \text { are linked in layer } 1 \text { and in layer } 2 \\
0 & \text { otherwise }\end{cases} \\
& A_{i j}^{00}= \begin{cases}1 & \text { if node } i \text { and node } j \text { are not linked in layer } 1 \text { and not linked in layer } 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Constraints on the multiadjacency matrices

$$
A_{i j}^{10}+A_{i j}^{01}+A_{i j}^{11}+A_{i j}^{00}=1
$$

Multidegree

- The multidegree \vec{m} is defined as

$$
k_{i}^{\vec{m}}=\sum_{j} A_{i j}^{\vec{m}}
$$

- In the case of two layers we have

$$
\begin{aligned}
& k_{i}^{10}=\sum_{j} a_{i j}^{1}\left(1-a_{i j}^{2}\right) \\
& k_{i}^{01}=\sum_{j}\left(1-a_{i j}^{1}\right) a_{i j}^{2} \\
& k_{i}^{11}=\sum_{j} a_{i j}^{1} a_{i j}=o_{i}
\end{aligned}
$$

Configuration model for the correlated multiplex(microcanonical ensemble)

$$
P(\vec{G})=\frac{1}{\Sigma_{1}} \prod_{i} \delta\left(k^{10}{ }_{i}-\sum_{i} A_{i j}^{10}\right) \delta\left(k^{01}{ }_{i}-\sum_{j} A_{i j}^{01}\right) \delta\left(k^{11}{ }_{i}-\sum_{j} A_{i j}^{11}\right)
$$

Ensemble of multiplex with given multidegree sequence

Configuration model for the correlated multiplex (microcanonical ensemble)

$$
P(\vec{G})=\frac{1}{\Sigma_{1}} \prod_{i} \delta\left(k^{10}{ }_{i}-\sum_{i} A_{i j}^{10}\right) \delta\left(k^{0{ }_{1}} i-\sum A_{i j}^{0_{i j}}\right) \delta\left(k_{i}^{1{ }_{i}}-\sum_{j} A_{i j}^{11}\right)
$$

Canonical network model for the correlated multiplex

$$
P(\vec{G})=\prod_{i<j}\left(p_{i j}^{10} A_{i j}^{10}+p_{i j}^{01} A_{i j}^{01}+p_{i j}^{11} A_{i j}^{11}+p_{i j}^{00} A_{i j}^{00}\right)
$$

Constructive algorithm
For every pair of nodes (i,j)

where $m_{\alpha}=1$.
G. Bianconi arxiv:1303.4057 (2013)

Entropy of correlated multiplex ensembles

Entropy of a canonical multiplex ensemble with linear constraints

$$
S=-\left[\sum_{\vec{m}} \sum_{i j} p_{i j}^{\vec{m}} \ln p_{i j}^{\vec{m}}\right]
$$

Entropy of a microcanonical mutliplex ensemble with linear constraints con be found by the cavity method, if we fix only the multi degree sequence in the sparse network limit, with structural cutoff we recover a generalization of the Bender and Canfield formula

$$
\Sigma=\log [\kappa] \quad \text { with } \kappa=\prod_{\vec{m} \sum_{\alpha}^{m}>0} \frac{\left(2 L^{\vec{m}}\right)!!}{\prod_{i} k_{i}^{\vec{m}!}} e^{-\frac{1}{4}\left(\frac{\left.\left\langle k^{m}\right)^{2}\right\rangle}{\left\langle k^{m}\right\rangle}\right)^{2}}
$$

Election model on multiplex networks

Competing networks: the case of political elections

We assume that each party is represented by a network.

At the end of the election campaign each agent can be active at most in one network (he/she will vote for the corresponding party)

The election campaign is described as a competition between the two networks.

The election model

- The two layers are competing - on the election day, agents must be either active (green) in only one of the networks, or inactive (red) in both.

- At the election day an agent is voting for one party if at least one neighbor is voting for that party

$$
\begin{aligned}
& \sigma_{i}^{A}=\left[1-\prod_{j \in N_{A}(i)}\left(1-\sigma_{j}^{A}\right)\right]\left(1-\sigma_{i}^{B}\right) \\
& \sigma_{i}^{B}=\left[1-\prod_{j \in N_{B}(i)}\left(1-\sigma_{j}^{B}\right)\right]\left(1-\sigma_{i}^{A}\right)
\end{aligned}
$$

- During the "campaigning" process, we count the number of voters that conflict with the criterion above with the Hamiltonian

$$
H=\sum_{i}\left\{\sigma_{i}^{A}-\left[1-\prod_{j \in N_{A}(i)}\left(1-\sigma_{j}^{A}\right)\right]\left(1-\sigma_{i}^{B}\right)\right\}^{2}+\sum_{i}\left\{\sigma_{i}^{B}-\left[1-\prod_{j \in N_{B}(i)}\left(1-\sigma_{j}^{B}\right)\right]\left(1-\sigma_{i}^{A}\right)\right\}^{2}
$$

The election model

- At the beginning of the campaigning process, voters are "undecided" with random opinions subject to change.
- Evolution of opinions is modeled by a simulated annealing process.

As the election day approaches the temperature of the simulated annealed algorithm is reduced.

H has multiple fundamental states, simulated annealing always converges to one of these at the election day.

Phase diagram of the model

Two E-R networks are considered with average connectivities z_{A} and z_{B}. The size of the giant component of the percolating cluster in network A is plotted as a function of the average connectivities.

Region(I):	$S_{A}=0, S_{B}=0$
Region(II):	$S_{A}=0 S_{B}>0$
Region(III):	$S_{A}>0 S_{B}=0$
Region(IV):	$S_{A}>0 S_{B}>0$

In region III both political parties percolate in the population

Halu, Zhao, Baronchelli and Bianconi EPL (2013)

Connect and win

We plot $m_{A}-m_{B}$, i.e. the number of agents that vote for party A minus the number of agents that vote for party B averaged over 90 realizations.

The most connected party is the one that is more likely
to win the election!

Effect of the committed agents in the majority

-The effect of committed agents in Region II ($z_{A}=2.5 z_{B}=4$)
-A small fraction (~0.1) of agents is sufficient to reverse the outcome of the election.

Halu, Zhao, Baronchelli, Bianconi EPL (2013)

Conclusions

- Many networks interact, coexist and coevolve with other networks forming multiplexes where any pair of nodes can be linked by different types of interaction
- Modeling interacting and multiplex networks is only in its infancy and we need to develop a new series of non-equilibrium and equilibrium models and to compare their outcome to real data.
- Critical phenomena on multiplex and interacting networks show new surprising physics.

References and collaborators

- Growing multiplex model
V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy arxiv:1302.7126
V. Nicosia (QMUL)
V. Latora (QMUL)
M. Barthelemy (CEA)
- Multiplex ensembles
G. Bianconi arxiv:1303.4057
- Election model
A. Halu, K. Zhao, A. Barochelli and G. Bianconi EPL 102, 16002 (2013)
A. Halu (Northeastern University)
K. Zhao (Northeastern University)
A. Baronchelli (Northeastern University)

