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Very Simple Models of  Transport  in Fungal Networks 



Our work with Nets breaks in 3 
1) Cellular energy variability 

- Mitochondrial networks 
- Networks of cells (via gap junctions) 

2) Principles of Natural networks 
- Transport in vascular systems 
- Parameterized complexity and community structure 
- Public health networks 
- Ensembles of noisy coupled elements inferring and tracking 
- Evolutionary morphings along nets for inference (see   Evolution of 
Complexity meeting in Sept) 

3) Highly comparative data analysis 
 -  Finding common structure in sets of net-methods & nets 
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1) Introduce a simple view 

2) Discuss its implications 

3) Refine the view slightly 

4) Discuss further implications 
 
 
 
 

Transport - What we will discuss: 



1) Active transport of nutrients 
2) Contractile elements 
3) Concentration gradients inside 

the organism drive flows 
 
 
 
 

How to transport? Three possible views 

Roger Lew 
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… or “There’s nothing too special 
about fungi”. 

 
 
 
 

How to transport? Three possible views 
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e) d) c) 

a) b) 

Inoculum 

Cord 

Sand 



1)  System is under pressure 

2) Sites of water uptake are distal 
from sites of growth 

 
3) If you grow you flow. 
 
 
 
 

Another view 



Growth-induced mass flows 



Resistor Model  
 
 
Growing edges are sinks, while  
shrinking edges are sources. 
 
 
 
 



 
 
 
Inflow at the inoculum  
equals the total rate 
of growth. 
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shrinking edges are sources. 
 
 
 
 



 
 
 
Inflow at the inoculum  
equals the total rate 
of growth. 
 
 

For every other 
node, the total  
in-current must 
equal the total 
out current (Kirchhoff’s law). 
 
 
 
 

 
 
 
Growing edges are sinks, while  
shrinking edges are sources. 
 
 
 
 



1)  It allows us to calculate currents 
when a network grows. 

2)  We make an assumption: “cords 
with high current will get thicker” 

3)  If our model is relevant and the 
assumption is true the links with 
high predicted current wi l l 
thicken. 

Can this crude model predict anything? 









�� � � � �

Spearman’s rank correlation coefficient between 
speed and change in area was 0.33. 
 
 
 
 
 
 



Some indirect evidence to suggest 
that growth and flows are 

coupled. 
 
 

But clearly nutrients and flows are 
not the same thing. 

 
 
 

So far:    



 
 
 
 

Advection, Diffusion and Delivery 

1)  Nutrient amount per length: q 
2)  Rate of Delivery: R 
3)  Link velocity: u 
4)  Dispersion coefficient: D 
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1)  Effective incompressibility = high 
speed comms? 

2) No growth = death? 
3) Growth control = flow control 
 
 
 
 
 
 

Comments: 



1)  Effective incompressibility = high 
speed comms? 

2) No growth = death? 
3) Growth control = flow control 
 
 
 
 
 
 

Comments: 

Inoculum Growing 
Tip 



Luke Heaton, Eduardo Lopez, Philip 
Maini and Mark Fricker. 
 
 
 
 

Thanks to these chaps: 

Luke 
Heaton 



(1) L. L. M Heaton, E Lopez, P. K Maini, M. D Fricker, N. S Jones, 2010, Growth-
induced mass flows in fungal networks, Proc. Roy. Soc. B. 277: 3265-3274. 

(2) L. L. M Heaton, E Lopez, P. K Maini, M. D Fricker, N. S Jones, 2011, Advection, 
diffusion and delivery over a network.  at http://arxiv.org/abs/1105.1647 
 
(3) L. L. M Heaton et al, 2012, Analysis of Fungal Networks, Fungal Biology Reviews 

Thanks to you! 



If models as simple as those I’ve just 
presented constitute advances, 
this suggests we’ve a long way to 
go. 

 
 
 
 
 

Comments: 



 
We can also estimate the hydraulic conductance 
of each edge, and assume it is proportional to  
cross-sectional area. 
  
Conductance x Pressure drop = Current 
 



Modeling uptake and consumption 

lambda Experiment 1 Experiment 2 

0.05 0.45 0.38 

0.10 0.56 0.31 

0.15 0.56 0.31 

0.20 0.56 0.30 

Pearson’s linear correlation coefficient  
between photon count and predicted intensity 

C.F. Pearson’s coefficient between photon  
count and distance to the inoculum is -0.28 



The current is determined by the volumetric rate 
of growth at the tips 
 
Reducing the cross-sectional area of the 
supporting mycelium increases the velocity of 
flow 
 

Network structure is critical 



Inoculum Growing 
Tip 

Diffusion and active transport (vesicles and motor 
proteins) are needed near the tips, but regulation 
of the sites of growth and water uptake may be 
sufficient for long range transport in fungi. 

Network structure is critical 
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Because aqueous fluids are incompressible, 
changes in one part of the network can have a 
rapid effect elsewhere in the network.  
 
The local velocity of fluid flow provides quasi-
global information about the role of the cord in 
the network. 
 
If this really is the mechanism of long range  
transport, no growth = death. 
 
Fungi may not need to coordinate solute 
concentration across the network as fluid flows 
towards the growing regions. 
 
 
 
 
 



Modelling uptake and consumption 



Advection, diffusion, delivery  

Each edge in the network has a length,  
cross sectional area,  
mean velocity,  
decay rate/local delivery rate and 
dispersion coefficient. 

i j 

u ij S ij 

l ij 

(t) 

ij R 



Consistent concentration at the nodes, with perfect  
mixing. 
 
Velocities may vary over several orders of magnitude. 
 

Advection, diffusion, delivery  
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Note that if uij is negative, the medium-current flows

towards node i and −uij lij
Dij

is the macroscopic Péclet

number for the edge ij [7, 24]. Assuming that edge ij
is initially empty, we can find Qij(x, s) by substituting
Equations (17) and (18) into Equation (13), giving us

Qij(x, s) = Xij
sinh(α(l−x)

2D )

sinh( αl
2D )

e
ux
2D +Xji

sinh( αx2D )

sinh( αl
2D )

e
−u(l−x)

2D .

(19)

B. Advection, diffusion and delivery in an initially
empty, static network

Having examined the case of a single edge, we now
turn to the problem of coupling the edges of a network
such that the concentrations vary continuously as we
move from one edge to another. For each node i we
have Ci(s) =

∫∞
0 ci(t)e−stdt. Assuming that the cross-

sectional areas Sij are constant, Equations (3), (4) and
(16) imply that for all edges ij we have

Ci(s) =
Xij(s)

Sij
and Cj(s) =

Xji(s)

Sij
. (20)

Enforcing this equation ensures that the Laplace trans-
form of the concentration at node i is consistent for
all edges ij, ik, and so on. In general, we may not
know the Laplace transform of the node concentrations
C̄(s) = {C1(s), . . . , Cn(s)}. However, given Ī(t) =
{I1(t), . . . , In(t)} (the net current of resource leaving each
node), we can calculate Ῡ(s) = {Υ1(s), . . . ,Υn(s)} (the
Laplace transform of Ī), and, in the following manner,
calculate C̄(s). If we substitute Equation (13) into Equa-
tion (11), noting that x = 0 tells us that

Υi(s) =
∑

j

αij

2

(
B −A

)
+

uij

2

(
A+B

)
.

Equations (17) and (18) imply that A+B = Xij , and

B −A =
1

2 sinh( αl
2D )

[
Xije

αl
2D −Xjie

−ul
2D

− Xjie
−ul
2D +Xije

−αl
2D

]
,

so we have

Υi(s) =
∑

j

[
αij

2 sinh(αij lij
2Dij

)

(
Xij cosh(

αij lij
2Dij

)

− Xjie
−uijlij
2Dij

)
+

uij

2
Xij

]
. (21)

Equations (20) and (21) imply that

Υi(s) =
∑

j

[
Ci(s)Sij

(
uij

2
+

αij

2 tanh(αij lij
2Dij

)

)

− Cj(s)Sij

(
αije

−uijlij
2Dij

2 sinh(αij lij
2Dij

)

)]
. (22)

In other words, for each node i we have a linear equation
in C1(s), C2(s), . . . , Cn(s). Hence where C̄(s) and Ῡ(s)
are column vectors, we thus have

M(s)C̄(s) = Ῡ(s), (23)

where

Mij(s) =

{
∑

k Sik

[
uik
2 + αik

2 tanh
(

αiklik
2Dik

)
]

if i = j,

−Sijαije

−uijlij
2Dij

2 sinh
(

αij lij
2Dij

) otherwise.

(24)
We refer to the matrix M(s) as the propagation ma-

trix, and it contains a row and column for each node in
the given network. Given M(s) and Ῡ(s) we can calcu-
late C̄(s) using various efficient algorithms, including the
stabilized biconjugate gradient method (BiCGStab). In
most cases this is the most efficient algorithm to use, as
our matrix M(s) is non-symmetric and sparse [36].
Equation (14) implies that the diagonal elementsM(s)

are all positive. Furthermore, Mij(s) = 0 if and only
if there is no edge between i and j, and the other off-
diagonal elements are negative. We note that if there
is resource at node j, it may be transported along ij,
bringing resource to i and reducing Υi(s) (the Laplace
transform of the net current flowing out of node i). Re-
source can only reach node i along the edges ij, ik, etc,
so Υi(s) is completely determined by the concentration
at i and the concentrations that flow through the nodes
adjacent to i. As Υi(s) is the Laplace transform of the
net current flowing out of node i, and resource at nodes
j "= i can flow into node i, the off-diagonal elements of
M(s) are negative, and zero if i and j are not directly
connected.
Multiplying

∣∣Mij(s)
∣∣ by Cj(s) gives us the Laplace

transform of the current of resource flowing from j to i,
so roughly speaking,

∣∣Mij(s)
∣∣ represents the size of the

volumetric current from j to i, over the time scale 1/s.
Note that if uij is positive, then the medium-current flows
from i to j,

∣∣Mij(s)
∣∣ <

∣∣Mji(s)
∣∣, and there is a greater

flow from i to j than the other way around. That is to
say, when the medium-current is from i to j, the value of
Ci(s) has a greater influence on the value of Υj(s) than
the influence of Cj(s) on the value of Υi(s). Also note
that the ratio of Mij(s) to Mji(s) depends on the Péclet

number uij lij
Dij

, as Mij(s) : Mji(s) is equal to 1 : e
uijlij
Dij .

For very short time scales we have a very large s, and
by Equation (14), αij # uij and αij ≈

√
4Dijs. In this

case the off-diagonal elements of M are very small, and
Mii ≈

∑
k Sik

αik
2 ≈

∑
k Sik

√
Diks. In other words, over

very short time scales resource is lost from the nodes by
a process of diffusion, but it does not have time to reach
the other nodes. Over longer time scales the difference
between uij and αij is smaller, the off-diagonal elements
of M are larger, and effect of advection is greater.

Advection, diffusion, delivery  
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Modelling uptake and consumption 

Mass flows occur in transport vessels of radius 6!m, which 
occupy some fraction  of each edge. 
 
The diffusion coefficient D = 3.5 x 10 cm  s , and we use 
Taylor’s dispersion formula to calculate the dispersion 
coefficient for each edge. 
 
Growing edges are sinks for fluid, while shrinking edges and 
the inoculum are sources. It is assumed that each edge 
continues to grow or shrink at the rate that was measured 
 
AIB enters the network at the inoculum at a constant rate, 
the local delivery rate R is small. The number of photons 
leaving node i over time t is proportional to   

2    -1 
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∫



Modelling uptake and consumption 

Current = Cross sectional area x Velocity 

€ 

∝
1
λ

Velocity 



 
Fluid flows from the site of water uptake 
to the extending tips regardless of the 
concentration gradient. 
 
 
 

 
Cords are unlike phloem vessels 
because they are waxy and insulated 
from the environment. 
 
 
 



Sink Source Sink Source 

Thickening high current edges is more energy 
efficient than thickening low current edges. 
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Sink Source Sink Source 

Thickening high current edges is more energy 
efficient than thickening low current edges. 
 
Shorter paths have lower resistance, and 
hence more current. 
 
If carrying a large current results in thickening, 
the rich get richer. 



Systems and Signals Group 

  Current research topics 
  Cellular variability 

  Principles of natural networks 

  Highly comparative data analysis 

  Specific project for fungal networks 



Cellular variability 



Mitochondrial Variability 

  Why are genetically identical cells phenotypically 
different? Is the modulated by (time varying) networks of 
mitochondria?  

Iain Johnston 



Stem cell differentiation 
landscapes and mitochondrial 

noise 

  What is the source of noise that leads to cell fate 
decisions? 

Bernadett Gaal 



Processing by noisy cells 

  How do noisy cells process both as individuals 
and as coupled ensembles? 

  How do they perform inference, decisions and 
control their relationships? 

Sam Johnson 



Steppy Signal Processing 

 Generalized Methods and Solvers for Noise Removal from Piecewise Constant 
Signals Parts I and II: Proceedings of the Royal Society A (2011) 

  Steps and bumps: precision extraction of discrete states of molecular 
machines using physically-based, high-throughput time series analysis.  
Biophysical Journal (2011) to appear. 

 Signal Processing 

Max Little 
(now MIT 
and 
Oxford) 



Principles of Natural Networks 



Parameterized Complexity 

 

  How do dense regions in networks affect the time it take 
to solve problems on them? 

Binh-Minh Bui-
Xuan 



Inter-species network inference 

  Using one protein interaction network to guess the 
protein interaction network of another species. With 
Mason Porter and Charlotte Deane. 

Anna Lewis 

? 

yeast human 



Dynamic network inference from 
multivariate signals 

  How to go from a set of signals to a sequence of time 
evolving networks? 



Ancestral inference with shapes 
and functions 



Community detection and disease subtypes 



Highly Comparative Data 
Analysis 



Highly Comparative Analysis of 
Signals 

  What is the empirical structure of our signals and our 
methods? 

Ben Fulcher 



Highly Comparative Analysis of 
Networks 

Sumeet Agarwal 

What is the empirical structure of 
our networks and our methods? 



Highly Comparative Analysis of 
Fitness landscapes [Functions on 
(Discrete) Configuration Spaces] 

Jamie King 

What is the empirical 
structure of our 
landscapes and our 
methods? 


