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 Communities, Dynamics, and 
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 Conclusions




  A network consists of 
nodes representing 
agents connected by 
edges representing ties

›  Binary edges: 0 or 1

›  Weighted edges

›  Directed edges

›  Bipartite networks

›  time-dependence

›  Multiplexity

›  Hypergraphs

›  Spatially Embedded 

networks










Mathematical Genealogy Network 
S. Myers, P. J. Mucha, and MAP [2011]. “Mathematical Genealogy & 
Department Prestige”, Chaos 21(4): 041104 (Gallery of Nonlinear Images). 



Suburban Bacon Network 





  Communities = Cohesive 
groups/modules/
mesoscopic structures

›  In stat phys, one tries to 

derive macroscopic 
and mesoscopic insights 
from microscopic 
information


  Community structure 
is both modular and 
hierarchical


  communities have 
larger density of 
Internal ties relative 
to some null model 
for what ties are 
present at random

›  Modularity








  Survey article

›  MAP, J.-P. Onnela, & P. J. Mucha [2009], Notices 

of the American Mathematical Society 56(9): 
1082-1097, 1164-1166


  Types of methods

›  Agglomerative


  E.g., linkage clustering


›  Divisive

  E.g., partitioning by optimizing modularity or using 

centrality-based methods (such as Girvan-Newman 
algorithm)


›  Local methods

  E.g., k-clique percolation


›  Edge-based

  E.g., Y. Y. Ahn’s talk




  Minimize: 


›  Potts Hamiltonian

   i = community assignment (spin state) of node i

  Jij > 0  “ferromagnetic” interaction between I & j 


 nodes I and j try to be in the same state

  Jij < 0  “antiferromagnetic” interaction between I 


& j  nodes I and j try to be in different states


  Modularity Optimization:

›  Aij = adjacency matrix

›  W = (1/2)ΣijAij = sum of all edge weights

›  Pij = prob(I connected to j) in null model


  Newman-Girvan: pij = kikj/(2W), where ki = ΣjAij = 
total edge weight of node I


  “Resolution parameter”: use λ*pij




A. L. Traud, E. D. Kelsic, PJM, & MAP [2011], SIAM Review, 53(3): 526—543

ALT, C. Frost, PJM, & MAP [2009], Chaos 19(4): 041104 (Gallery of Nonlinear Images)

ALT, PJM, & MAP [2012], Physic a  391(16): 4165—4180




  Nodes = individuals


  Edges = self-identified friendships (1 or 0)


  Our data

›  100 different universities (full networks)


›  Single-time snapshot: September 2005

  Facebook was university-only


›  Self-reported demographics

  Gender, class year, high school, major, 

dormitory/”House”


›  Provided by Adam D’Angelo & Facebook




Full networks (single university, largest connected component)






Is this random? Is is correlated?  Visually, it’s not clear!          
What quantitative statistical tools are available?




  Available Methods: cluster matching, 
information theoretic methods, pair 
counting, generative models (e.g., ERGM)?


  Pair-counting indices: Rand, Jaccard, 
Minkowski, Fowlkes-Mallows, gamma, 
Adjusted Rand, …

›  Simple to state, but have various problematic 

properties

›  We find a Unified interpretation by recasting 

index values as  z-scores relative to shuffled 
data (i.e., using permutation tests)




  Related to other set distances, but applied to node pairs


  W11 = # node pairs put in the same group in 1st and also in 
the same group in 2nd partition


  W10 = # node pairs put in the same group in 1st partition 
but different groups in 2nd partition


  W01 and w00 defined analogously


  M = total node pairs = Σijwij




1.  z-scores for Rand, Adjusted 
Rand, Fowlkes-Mallows, & 
gamma indices are provably 
identical


2.  Analytical formulas exist for 
the above indices (need 
permutation tests for Jaccard 
and Minkowski)






 Houses are important at Caltech 
(reality check for methodology)


 High school is more important at 
large state universities


  Class year is the most important 
factor at most universities and 
dorm is often a very strong 
secondary factor


 Major has varying importance at 
different universities








 Dynamics on networks

›  E.g., how does network structure affect 

dynamics, models of social influence, etc.


 Dynamics of networks

›  E.g., communities in evolving networks


  Temporal dynamics


  Dynamics with respect to parameters


 Developing some theory…

›  E.g., “Multislice” networks, mesoscopic response 

functions, new methods to detect core-periphery 
structure, etc.




  A. C. F. Lewis, NSJ, MAP, & C. M. Deane, BMC Systems Biology 4: 100 (2010)


  Protein-Protein Interaction Networks


  Examine changes in communities with respect to resolution parameters


  Investigate biological properties of “persistent” communities


  Can network properties pick out functionally homogeneous communities?  

  Clustering coefficient does well (best among 49 tested properties), which is very 

nice given incompleteness of Gene Ontology (GO) annotations
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nice given incompleteness of Gene Ontology (GO) annotations




  D. S. Bassett, E. T. Owens, K. E. 
Daniels, & MAP, arXiv:
1110.1858


  2D granular medium of 
photoelastic disks


  Two networks

›  Underlying topology 

(unweighted)

›  Forces (weighted)


  Meso-scale structures 
(communities) of both types 
of networks are crucial 
for characterizing sound 
propagation, illustrating 
that contact topology 
alone is insufficient




  M. P. Rombach, MAP, J. H. Fowler, 
& PJM, arXiv:0212.2684 (2012)


  Core-periphery structure is a 
different type of mesoscopic 
structure from community 
structure.




  PJM, T. Richardson, Kevin 
Macon, MAP, & JPO, 
Science 328(5980): 876-878 
(2010)


  detect communities in 
networks in a general 
setting that 
incorporates time-
dependence, parameter-
dependence, and 
multiplexity

›  Normal connections in 

a single slice + 
connections between 
node J and itself in 
different slices


›  Slice = different 
resolution, different 
time, different type of 
link, etc.




  Undirected network slices: Aijs = Ajis

  Undirected couplings: Cjrs = Cjsr

  Multislice strength: κjs = kjs + cjs


  Density of random walkers in a node-slice:


  Steady-state probability distribution:

›  Pjr

* = κjr/(2μ)


›  2μ = Σjr(κjr)




  Specify null model: Probability of sampling 
node-slice is conditional on whether the 
multislice structure allows one to step from 
node-slice jr to node-slice is:


  Multislice modularity:


  each slice has own resolution parameter γs




  Time-dependent network 
with over 200 years of 
roll call votes (1789-2008)

›  Weighted intra-slice edges 

based on voting similarity 
(computed separately for 
each slice)


›  Interslice edges for Senators 
in consecutive 2-year 
Congresses


  Colors = communities




  DSB, N. f. Wymbs, MAP, 
PJM, J. M. Carlson, & S. T. 
Grafton, PNAS 108(18):
7641—7646 (2011)


  fMRI data: network 
from correlated time 
series


  Examine role of 
modularity in human 
learning by identifying 
dynamic changes in 
modular organization 
over multiple time 
scales


  Main result: flexibility, 
as measured by 
allegiance of nodes to 
communities, in one 
session predicts amount 
of learning in future 
sessions
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NFW, DSB, PJM, MAP, & STG, “Differential 
Recruitment of the Sensorimotor 
Putamen and Frontoparietal Cortex 
During Motor Chunking in Human”, to 
appear in Neuron (2012) 



  Conclusions in limerick form*:


When detecting a network’s communities,

Try not to do it with impunity.


For it is not enough

To stop with that stuff.


Be sure to think about functionality.


  In other words…

  Most research on community 

structure:

›  Finds communities, possibly presents 

a new method, and stops.

  Another important consideration: 

Validating and/or studying the 
properties of communities once we 
have them


  * The audience at University of 
Limerick was far less amused by this 
than I thought they’d be.




 My collaborators and I will soon be 
advertising five 3-year postdoc 
positions to study theory and 
applications of multiplex networks.

›  1 postdoc at each of 5 universities


›  Investigators: Alex Arenas, Marc 
Barthelemy, James Gleeson, Yamir 
Moreno, Mason Porter





