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Preface
“Our children no longer want to become physicists and astronauts.

They want to invent the next Facebook instead. 

They don’t talk quanta — they dream bits. 

They don’t see entanglement but recognize with ease nodes and links.” 

                                                                A.-L. Barabási, Nature Physics (2011)
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“Our children no longer want to become physicists and astronauts.

They want to invent the next Facebook instead. 

They don’t talk quanta — they dream bits. 

They don’t see entanglement but recognize with ease nodes and links.” 

                                                                A.-L. Barabási, Nature Physics (2011)

Quantum Information studies how to 
encode, process and transfer 
bits stored in quantum systems

(atoms, photons, etc.)
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Preface
“Our children no longer want to become physicists and astronauts.

They want to invent the next Facebook instead. 

They don’t talk quanta — they dream bits. 

They don’t see entanglement but recognize with ease nodes and links.” 

                                                                A.-L. Barabási, Nature Physics (2011)

Quantum Information studies how to 
encode, process and transfer 
bits stored in quantum systems

Quantum Information studies entanglement 
and sometimes it is about nodes and links
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Introduction

Quantum Information (QI)

Features & Merits:
1. Information is tied to a physical representation
2. The quantum world can be engineered
3. Interesting conceptual & mathematical toolbox
4. App.: QI guarantees secure communication
5. App.: QI clarifies the limits of computation
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Features & Merits:
1. Information is tied to a physical representation
2. The quantum world can be engineered
3. Interesting conceptual & mathematical toolbox
4. App.: QI guarantees secure communication
5. App.: QI clarifies the limits of computation

Issues:
1. Quantum vs. Gravity
2. The macroscopic world is classical
3. Implementability of protocols
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Introduction

Quantum Information (QI)

Features & Merits:
1. Information is tied to a physical representation
2. The quantum world can be engineered
3. Interesting conceptual & mathematical toolbox
4. App.: QI guarantees secure communication
5. App.: QI clarifies the limits of computation

1. What is the interface with networks?
2. Can we use the toolbox of QI
    in Network Theory?

Issues:
1. Quantum vs. Gravity
2. The macroscopic world is classical
3. Implementability of protocols
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Quantum features
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Quantum features

Everything classical 
is also quantum  

Classical
world

Quantum
world 
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Quantum features

Everything classical 
is also quantum  

Classical
world

Quantum
world 

Mathematical 
axioms

Composite systems 
need a tensor product

Dynamics
is reversible  

Time

Time

Stronger than classical
correlations

Quantum system 
A

Quantum system 
B

Physical states 
are matrices 
generalizing 

probability distributions
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Plan

QI and Networks

Concrete networks:
Multiparticle 

systems

Abstract networks:
Channels

Even more abstract networks:
Mathematical representations
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Multiparticle systems
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Concrete networks
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Multiparticle systems
Particle

Part 1: Multiparticle systems, 18/39 – 56
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Multiparticle systems
Particle

Interactions

Part 1: Multiparticle systems, 1/30Part 1: Multiparticle systems, 19/39 – 56
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Multiparticle systems
Particle

Interactions

Network:
1. Nodes are matrices
2. Time evolution modifies the matrices

Part 1: Multiparticle systems, 1/30Part 1: Multiparticle systems, 20/39 – 56
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Multiparticle systems
Particle

Interactions

Network:
1. Nodes are matrices
2. Time evolution modifies the matrices

Prepared state

Part 1: Multiparticle systems, 17/39 – 56Part 1: Multiparticle systems, 21/39 – 56
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Multiparticle systems
Particle

Interactions

Network:
1. Nodes are matrices
2. Time evolution modifies the matrices

Prepared state

Diffusion:
1. Generalized
random walk
2. Not stochastic
but unitary
(i.e., reversible)

Part 1: Multiparticle systems, 1/30Part 1: Multiparticle systems, 22/39 – 56
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State transfer

Random walk Quantum walk

Part 1: Multiparticle systems, 1/30

 Dice

 Optical
waveguides

Part 1: Multiparticle systems, 23/39 – 56
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State transfer

1/81/8

1/8

1/8

1/8 1/8

1/8

1/8 1

At∗v0=v t exp [ A∗i∗t ]v0=v t

Part 1: Multiparticle systems, 1/30

Random walk Quantum walk

A is the adjacency matrix

S. Bose, Phys. Rev. Lett. 91, 207901 (2003)
Part 1: Multiparticle systems, 24/39 – 56
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Wave communication

Sender

Unknown
target

Part 1: Multiparticle systems, 1/30
B. Hein, G. Tanner, Phys. Rev. Lett. 103, 260501 (2009)

The signal explores the 
network but at a given time 
it is only at the target node

(Why? Interference effects 
depending on the 

structure of the network)

Part 1: Multiparticle systems, 25/39 – 56
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Control

Part 1: Multiparticle systems, 1/30

Goal: transform the whole system in a desired state
Task: act on the minimum number of particles

D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99, 100501, (2007)
Part 1: Multiparticle systems, 26/39 – 56
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Goal: transform the whole system in a desired state
Task: act on the minimum number of particles

Initialized particles

D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99, 100501, (2007)
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Control

Part 1: Multiparticle systems, 1/30

Goal: transform the whole system in a desired state
Task: act on the minimum number of particles

Initialized particles

A blue node can 
“propagate” its colour 
to a white node if this 

is its only white 
neighbour. 

D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99, 100501, (2007)
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Control

Part 1: Multiparticle systems, 1/30

Goal: transform the whole system in a desired state
Task: act on the minimum number of particles

Initialized particles

A blue node can 
“propagate” its colour 
to a white node if this 

is its only white 
neighbour. 

D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99, 100501, (2007)
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Control

Part 1: Multiparticle systems, 1/30

Punchline: 
1. This game is related to Kalman's 
Rank Condition for controllability
2. NP-hard
3. Many variants

D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99, 100501, (2007)

For the mathematical palate: the projection operator 
induced by the characteristic vector of the initially 
coloured vertices together with the adjacency matrix 
of the graph generate the set of all skew-symmetric 
matrices. 

Part 1: Multiparticle systems, 34/39 – 56
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Dynamics is reversible 
without noise  

Time

Time

Dynamics is irreversible
with noise  

Time

noise

M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, 
J. Chem. Phys. 129, 174106 (2008)

Noise

Part 1: Multiparticle systems, 35/39 – 56
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Dynamics is reversible 
without noise  

Time

Time

Dynamics is irreversible
with noise  

Time

noise

Without noise:  
High symmetry:        Low symmetry: 
       Good                         Bad

M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, 
J. Chem. Phys. 129, 174106 (2008)

Noise
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Dynamics is reversible 
without noise  

Time

Time

Dynamics is irreversible
with noise  

Time

noise

With noise:  
High symmetry:        Low symmetry: 
       Bad??                     Good??

Without noise:  
High symmetry:        Low symmetry: 
       Good                         Bad

M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, 
J. Chem. Phys. 129, 174106 (2008)

Noise
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Dynamics is reversible 
without noise  

Time

Time

Dynamics is irreversible
with noise  

Time

noise

With noise:  
High symmetry:        Low symmetry: 
       Bad??                     Good??

Without noise:  
High symmetry:        Low symmetry: 
       Good                         Bad

M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, 
J. Chem. Phys. 129, 174106 (2008)

Multichromophoric 
energy transfer

Noise

Part 1: Multiparticle systems, 38/39 – 56
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Summary

Part 1: Multiparticle systems, 1/30

News:
1. A new paradigm for information transfer in networks 
2. New methods to explore networks
3. New phenomena occurring on networks
4. New network-theoretic parameters
5. A way to encode information in nodes and links

Problems:
1. What is the role of network structure? 
2. What about classifying networks according to their “quantum” properties?
3. What are the best networks for optimal energy/information transfer?

1

Part 1: Multiparticle systems, 39/39 – 56
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Channels

2

Abstract networks

Part 2: Channels, 1/30Part 2: Channels, 40/49 – 56
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Channels

Part 2: Channels, 1/30

Discrete memoryless 
Channel (Shannon 1948)

Sender 
A

Receiver 
B

 Probability to confuse 
and

Part 1: Multiparticle systems, 17/39 – 56Part 2: Channels, 41/49 – 56
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Channels

Part 2: Channels, 1/30

Discrete memoryless 
Channel (Shannon 1948)

Sender 
A

Receiver 
B

X
X

X

X
X

X
X

X
XX

0 0 0
0 00

0 0 0
0

0

0 0
00 0

Part 2: Channels, 42/49 – 56
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Zero-error communication

Part 2: Channels, 1/30

Sender 
A

Receiver 
B

1
1

1

1
1

1
1

1
11

0 0 0
0 00

0 0 0
0

0

0 0
00 0

If we disregard how much the 
symbols are confusable...

Zero-error communication
 (Shannon 1957)

Part 2: Channels, 43/49 – 56
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Zero-error communication
 (Shannon 1957)

Sender 
A

Receiver 
B

Zero-error communication

Part 2: Channels, 44/49 – 56
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Zero-error communication
 (Shannon 1957)

Sender 
A

Receiver 
B

The single-shot zero-error capacity 
is the independence number, i.e., 
the max number of non-confusable 
symbols.

Zero-error communication

Part 2: Channels, 45/49 – 56
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Shannon capacity

Part 2: Channels, 1/30

Zero-error communication
 (Shannon 1950s)

Sender 
A

Receiver 
B

Shannon capacity:
This is the max independence 
number of an infinite series of strong 
graph products (normalized).

 ...

Zero-error communication
 (Shannon 1950s)

Berge (1970s)
Lovász (1978)
Haemers (1979)
Alon (1990s)
Alon-Lubetsky (2000s)

Each vertex is a word...

Part 2: Channels, 46/49 – 56
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Lovász number

Part 2: Channels, 1/30

Sender 
A

Receiver 
B

X
X

X

X
X

X
X

X
XX

1 1 1
1 11

1 1 1
1 1 1

11 1

Zero-error communication
 (Shannon 1950s)

Berge (1970s)
Lovász (1978)
Haemers (1979)
Alon (1990s)
Alon-Lubetsky (2000s)

Lovász number:
The Shannon capacity is not even 
known to be computable, but it is 
upper bounded by the largest  
eigenvalue of symmetric matrices of 
this form, minimized over their set.

Great conceptual leap!
It keeps into account any 
possible weight on the edges.

Part 2: Channels, 47/49 – 56
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Generalizations of graphs

Sender 
A

Receiver 
B

Shared  quantum resources

Quantum system 
A

Quantum system 
B

With quantum resources:
1. The Shannon capacity can 
increase (there are examples)!
2. We define new graph-theoretic 
quantities (e.g., min ranks).
3. We generalize graphs and lift 
the combinatorics to operator 
theory. 

S={T : ∀{x , y }∉E xTyT=0}

Operator system (classical case):

G
H

Continuous 
“deformation”

R. Duan, S. Severini, A. Winter, arXiv:1002.2514v2 [quant-ph]
Part 2: Channels, 48/49 – 56



  

1/30 Simone Severini

Summary

Part 1: Multiparticle systems, 1/30

News:
1. A generalized paradigm for zero-error communication
2. (Again) New network-theoretic parameters
3. A larger information theory related to networks
4. New mathematical tools from operator theory

Problems:
1. (Again) What is the role of network structure? 
2. (Again) What about classifying networks according to their new 
information theoretic properties?
3. Can we define inherently quantum properties of networks (e.g., for 
the ones for which the quantum-resources-assisted Shannon capacity 
increases)?

2

Part 2: Channels, 49/49 – 56
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Mathematical representations

3

Even more abstract networks
(examples)

Part 3: Mathematical representations, 50/55 – 56



  

1/30 Simone Severini

Mathematical representations

Part 2: Channels, 40/49 – 56Part 3: Mathematical representations, 51/55 – 56

Physical states 
are matrices 
generalizing 

probability distributions

Mathematical 
axioms

Composite systems 
need a tensor product

Dynamics
is reversible  

Time

Time

Everything classical 
is also quantum  

Classical
world

Quantum
world 

Graph Laplacians 
are quantum states

Space as a 
time-dependent graph

Unitary matrices 
aid to hear graphs
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Laplacians are quantum states

Part 3: Mathematical representations, 52/55 – 56

L(G)=Δ(G)−A(G)

Degree matrix
[Δ]i , j=d (i)δij

Adjacency matrix

Laplacian:

Laplacians are symmetric;
all the eigenvalues are nonnegative

ρ(G)= 1
Tr (Δ)

L(G)

This is a density matrix
(i.e., a quantum state)

ρ(G)= 1
Tr (Δ) ∑

{i , j }∈E

1
2
([e i ]−[e j ])

Purification 

Ψ(G)= ∑
{i , j }∈E

f ij (e i−e j)⊗ e ij∈H V ⊗ H E

Mixture of pure state (projectors)

S (G)=−∑
i

λi log λi

Von Neumann Entropy:
 It is the measure of 
“entanglement” between “vertices 
and edges”.

S. L. Braunstein, S. Ghosh, S. Severini, Ann. Comb., 10:3, 2006
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Unitary matrices aid to hear graphs

Part 3: Mathematical representations, 53/55 – 56

A(G)=P A(H )PT

G≃H

Permutation matrix

Graph isomorphism: 

G≃H ⇒ Sp(G)=Sp(H )

Spectrum

∀(i , j) ,(k ,l)∈D(G)

Grover matrix (it's unitary)

[U (G)](i , j ) ,(k , l )=2/d ( j)−δil , j=k ; 0

“Can one hear the shape of a drum?” 
was posed by Marc Kac (1966)

Not always...

Biorientation

Algorithm:

[ X (G , p)]x , y=1⇐[U p(G)]i , j>0
[ X (G , p)]x , y=0⇐[U p(G)]i , j⩽0

G≃H ⇔Sp(X (G ,3))≠Sp(X (H ,3))
For all regular graphs up to 13 vertices

Conjectured to hold for all strongly regular 
graphs (tested for up to 64 vertices)

D. Emms, E. Hancock, S. Severini, R. Wilson, Pattern Recognition 42(9): (2009)
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Space as a time-dependent graph

Part 3: Mathematical representations, 54/55 – 56

Wheeler's geometrogenesis 

The early universe was hot: 
no geometry

Later on, at lower temperature:
geometry

Hamiltonian

Conservation

T. Konopka, F. Markopoulou, S. Severini, Phys.Rev. D 77:104029, (2008)



  

information 
theory

statistical 
mechanics

computational
complexity

Graph 
states

State transfer on spin 
systems

Quantum 
expanders

Quantum 
walksGraphs of unitary 

matrices

Complexity 
metrics

Isomorphism 
(via encoding)

Network 
coding

Complex 
networks

Graphs as 
channels

Quantum 
colouring

Background independent 
models of gravity

Networks & quanta

combinatorics

Quantum Information and Graph Theory: 
emerging connections, Perimeter Institute for Th. Phys., 2008 

Conclusions Simone Severini

 
A new conference in 2013?
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