Novel network centrality and community measures and their changes in crisis and adaptation

www.linkgroup.hu info@linkgroup.hu Prof. Peter Csermely and the LINK-Group Semmelweis University, Budapest, Hungary

# Advantages of network multi-disciplinarity

WEAK LIN

MINDEN MÁSKÉPPEN VAN

1

Karinthy,

1929

Barabasi & Albert, 1999

whine Else and What It Means fo

Linked

Ibert-László Barabá

Csermely, 2004; 2009

DUNCAN J. WATTS

Watts & Strogatz,

1998

#### **Networks have general properties**

- small-worldness
- hubs (scale-free degree distribution)
- nested hierarchy
- stabilization by weak links

#### Generality of network properties offers

- judgment of importance
- innovation-transfer across different layers of complexity

# **Example to break conceptual barriers**

| <b>Early-warning signals for critical transitions</b><br>Marten Scheffer <sup>1</sup> , Jordi Bascompte <sup>2</sup> , William A. Brock <sup>3</sup> , Victor Brovkin <sup>5</sup> , Stephen R. Carpenter <sup>4</sup> , Vasilis Dakos <sup>1</sup> ,<br>Hermann Held <sup>6</sup> , Egbert H. van Nes <sup>1</sup> , Max Rietkerk <sup>7</sup> & George Sugihara <sup>8</sup> | Aging is an early warning signal of a critical transitionth                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>ecosystem, market, climate</li> <li>slower recovery from perturbations</li> <li>increased self-similarity of behaviour</li> <li>increased variance of fluctuation-patterns<br/>Nature 461:53</li> </ul>                                                                                                                                                               | Prevention: elements<br>with less predictable behaviour<br>• omnivores, top-predators<br>• market gurus<br>• stem cells |

Csermely et al., Science Signaling 4:pt3

#### Creative nodes: central, but unpredictable

**Creative:** few links to hubs, unexpected re-routing, flexible, **unpredictable** 

**Distributor:** hub, specialized to signal distribution, **predictable** 

change of roles Csermely, Nature 454:5 TiBS 33:569 TiBS 35:539



# **Problem solver:**

specialized to a task, **predictable** 

#### **3 novel types of dynamic centrality**

- topological centrality is key for perturbation dissipation (Turbine: www.linkgroup.hu/Turbine.php)
- game-centrality: prediction of biological regulators (NetworGame: www.linkgroup.hu/NetworGame.php)
- community centrality: prediction of survival importance (ModuLand: www.linkgroup.hu/modules.php)

## Hubs + inter-modular nodes are top transmitters of network perturbations



Szalay & Csermely, Science Signaling 4:pt3 www.linkgroup.hu/Turbine.php

# Use of network perturbations: allo-network drugs



#### **3 novel types of dynamic centrality**

 topological centrality is key for perturbation dissipation (Turbine: www.linkgroup.hu/Turbine.php)

 game-centrality: prediction of biological regulators (NetworGame: www.linkgroup.hu/NetworGame.php)

 community centrality: prediction of survival importance (ModuLand: www.linkgroup.hu/modules.php)

# Game-centrality: prediction of key nodes to break cooperation



union leaders: strike
 BC sociogram leaders: work

Hawk-dove game (*PD game: same*) Start: all-cooperation = strike Strike-breaker: defects BC-s are the best strike-breakers

Wang, Szalay, Zhang & Csermely, PLoS ONE 3:e1917; Simko & Csermely, Science Signaling 4:pt3 www.linkgroup.hu/NetworGame.php *Michael's strike network; Michael, Forest Prod. J.* 47:41

### **Bridges are crucial for cooperation**



Simko & Csermely, in preparation www.linkgroup.hu/NetworGame.php

- Met-tRNA-synthase protein structure network
   signaling amino acids (*Ghosh*, *PNAS* 104:15711): largest game-centrality
- yeast protein-protein interaction network amino acids regulating evolution *(Levy, PLoS Biol 6:e264)*: large game centrality

#### **3 novel types of dynamic centrality**

 topological centrality is key for perturbation dissipation (Turbine: www.linkgroup.hu/Turbine.php)
 game-centrality: prediction of biological regulators (NetworGame: www.linkgroup.hu/NetworGame.php)
 community centrality: prediction of survival importance (ModuLand: www.linkgroup.hu/modules.php)

## The ModuLand method family detects overlapping network communities

influence zones of all nodes/links

hierachy



community landscape

communities as landscape hills

#### Kovacs et al, PLoS ONE 5:e12528 www.linkgroup.hu/modules.php

# Influence zones using the NodeLand method

in**startingzoods** 

۲

community-44: 1127 schoolchildren, 5096 friendships; Add-Health

# The ModuLand method family detects overlapping network communities



# **Community centrality reflects the importance in stress-survival**



community centrality

yeast protein-protein interaction network: 5223 nodes, 44314 links
stress: 15 min 37°C heat shock
link-weight changes: mRNA expression level changes

Csermely & Mihalik PLoS Comput. Biol. 7:e1002187

## Changes of yeast interactome in crisis: a model of systems level adaptation



BioGrid yeast interactome: 5223 nodes, 44314 links
stress: 15 min 37°C heat shock
link-weight changes: mRNA expression level changes
ModuLand program, PLoS ONE 5:e12528

#### **Stressed yeast cell:**

nodes belong to less modules
modules have less intensive contacts
smaller overlaps between modules

Csermely & Mihalik PLoS Comput. Biol. 7:e1002187

# Consequences of network crisisadaptation

- more cohesive and separated network communities
- spared links
- noise and damage localization
- modular independence: larger response-space, conflict-management

# **Generality: emergence of two phenotypes**

- robust in yeast: many PPI-s, many types of stresses
- ecosystems: food limitation see otters, patchiness in drought
- brain: modular reorganization in learning
- social networks: Uzzi: broker stress, Estrada: model system
- economy: Schumpeterian creative destruction Haldane & May: US Volcker Rule separates bank system modules

## Many resources: large phenotype few resources: small phenotype





Bateson et al. Nature 430:419

Metabolism: large: rapid, overspending small: slow, 'thrifty' **'overeating' society: diabetes**  Janos Kornai: Thoughts about capitalism (*in Hungarian, in preparation in English*)

Society: large: capitalism small: socialism surplus and shortage economies







# **Turbine algorithm: perturbation model**

$$\frac{dE}{dt} = -\sum_{i=0}^{\infty} l\left(\frac{E-E_e}{2}w_i\right) - D_0$$
$$\frac{dw_l}{dt} = C_s \left((E_s - E_e)w_l\right)^2 - (A_s + A_e)t^2$$
$$\frac{dw_c}{dt} = -C_w \frac{dw_l}{dt} \frac{1}{l}$$

dissipation of perturbations

'learning' – 'aging': changes of link weights attenuation of other links, if a link gains weight

 $E_s$ , free energy of starting node;  $E_e$ , free energy of the other node on the link; l, degree; w, link weight;  $D_o$ , dissipation constant;  $C_s$ , amplification constant; A, aging sensitivity;  $C_w$ , attenuation constant if perturbation exceeds a limit: links are exchanged to half as many random links

Farkas *et al.*, Science Signaling 4:pt3 www.linkgroup.hu/Turbine.php

#### Importance of modular overlaps of protein-protein interaction networks in stress



Mihalik & Csermely PLoS Comput. Biol. 7:e1002187 analysis of overlapping network modules: ModuLand method