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Geo-social network analysis
can lead to insights
into social behaviour
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What can we study with
this type of data?

* Relationship of friendship and distance

* Relationship of interaction and distance

* Human mobility and role of places

* Models for geo-social network evolution
* Evolution of communities in space

* Applications:
— Recommendations, advertisement
— Urban planning
— Epidemics control
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Human Mobility and Role of Places

A tale of many cities: universal patterns in human urban mobility.
8 UNIVERSITY OF Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil, Cecilia
"‘5 CAMBRIDGE Mascolo. In PLoS ONE. PLoS ONE 7(5): €37027. doi:10.1371/journal.pone.0037027.




Samuel A. Stouffer

Stouffer's law of intervening opportunities states, "The number of persons
going a given distance is directly proportional to the number of opportunities at
that distance and inversely proportional to the number of intervening
opportunities." *

Empirically proved over migration
data from Cleveland.
Is it true in our data?

* S, Stouffer (1940) Intervening opportunities: A theory relating mobility and distance, American Sociological Review
5, 845-867



The importance of density
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Place density by far more important
than city area size with respect to
mean length of human movements.
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Rank distance

rank,(v) = |[{w : d(u, w) < d(u,v)}|

5 UNIVERSITY OF
4% CAMBRIDGE



Rank universality
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The rank of all cities collapses to a single line.
We have measured a power law exponent a = 0.84 = 0.07
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A new model for urban mobility
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Simulation results ...
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Modelling Geo Social
Network Evolution

_ Evolution of a Location-based Online Social Network: Analysis and Models. Militiadis
,, UNIVERSITY OF Allamanis, Salvatore Scellato and Cecilia Mascolo. In Proceedings of ACM Internet
8 4 CAMBRIDGE Measurement Conference (IMC 2012). Boston, MA. November 2012.




Geo-Social network evolution...

e How would Foursquare evolve in 2 months?
 What are the factor that shape geo-social network
evolution?
 Why would we be interested in forecasting
evolution?
* Design of distributed storage solutions.
* Delivery of user generated content.
e Recommendation.
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Modelling the
growth of (online) social networks

A common feature of social (and
other) networks is a skewed degree
distribution, and preferential
attachment can reproduce it:
popular users attract more links.

* This fails to generates triangles,
which are instead present: triadic
closure needs to be introduced.

e Several variations of these ideas
have been explored to model social

networks.
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Attachment in geo-social networks
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Temporal evolution of a
spatial social network

* Daily snapshots of Gowalla data Properties at the end of
May to Aug. 2010. Information measurement period
about user profiles, friends and Nodes 122,414
check-ins. Social links 580,446

 We study temporal network
grOWth . Average degree 0.48

) . Average clustering 0.254
— social edges creation and coefficient
Speed Average distance 1,792

between friends [km]

— social triangles creation

H K . Average distance
_ mObIIIty and space iImpact between users [km] >,663
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Global attachment models

For each new edge created from
user A to user B we compute the
probability of being created
according to different models (for

different parameters).

x 106

Log-likelihood

0.0 0.5
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®* D: proportional to a power

a of the degree of user B

A: prop. to a power a of the
age of user B

S: inversely prop. to a
power a of the geographic
distance between Aand B

DS: prop. to the degree of
user B and inversely prop.
to a power a of the
geographic distance
between A and B.



Predominance of triangle-closing links

Number of new links

New edges are exponentially
more likely to connect people
sharing at least one friend,
B UNIVERSITY OF creating social triangles.
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Social attachment
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Social attachment

source node
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Social attachment
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Social attachment

intermediate node
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Social attachment
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Social attachment

target node
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Social attachment

g_; UNIVERSITY OF
P CAMBRIDGE



Social attachment models

Intermediate node
models

B3\ UNIVERSITY OF

Percentage improvement on random choice (2 hop)

random shared degree | distance gravity

random 12.34 9.48 -3.47 -28.17 -35.26
shared 14.54 11.47 -0.95 -24.74 -34.46

degree 7.33 5.16 -6.79 -25.17 -41.98

distance -0.92 -3.70 -16.94 -39.32 -41.53
gravity 2.71 0.25 -12.11 -33.01 -43.18

Triadic closure is mainly driven

by social processes, while

geographic distance is not an
important factor.




What about geography?

/30% of new edges are established between users that share at \

least one common place.

-

10% of new links are created between users that do share
common places, but no common friends

~N

O —

=
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A social only model would fail to reproduce that users create new social
connections beyond their 2-hop neighborhood.
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Effect of distance

Distance of new links

Geographic proximity appears complementary
to social closeness: being close in space
connects people at large social distances.
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Mobility-driven attachment

Source
Node q,

Target
Node q,

5 UNIVERSITY OF
4% CAMBRIDGE




Choosing friends geographically

Select users who visit the same places

Select a user:

® Popular
® Active
® Close to the place

5

Select a visited place:
® Visited by many friends
® Visited by the user many times
® Very popular
® Close

58 UNIVERSITY OF
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Place-user choice

@ —

random | degree | deg-diffusion | user-checkins | tot-checkins | inv-tot-checkins | distance | gravity

random 0.28 6.88 9.24 0.16 -17.02 -4.51 -19.36 -7.04
friends 4.70 | 11.60 13.63 4.74 -10.63 -1.56 -14.88 -1.71
user-checkins 0.05,==G"59 | _ 8794 | -0.03 -17.27 -4.80 -19.69 -7.41
tot-checkins 6.( 13.13 )(15.18 ) 6.14 -9.29 0.04 -13.15 -0.02
tot-users 5.10 ™ 1233 33 5.16 -9.96 -1.08 -14.19 -0.84
place-distance -23.41 | -15.57 -13.21 -23.56 -40.82 -28.27 -43.67 | -30.17
place-gravity 0.37 7.22 9.46 0.32 -16.26 -5.29 -19.60 -6.81

*

proportional to user’s degree and inversely
proportional the logarithm of user’s total

number of visited places;
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Putting it all together

Global gravity model

Distance & degree are important on a
global level

Local Social random-random model
Triangle closure not affected by distance

tot-checkins - degree model
Popular places are important
Small-scale preferential attachment
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Putting all pieces together:

3 UNIVERSITY OF
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a new growth model

1. A new node joins the network and positions itself

over the space;

. It samples its lifetime from an exponential

distribution;

. The new node adds its first edge according to a

preferential attachment or gravity model;

. The node samples a time gap from the degree-

dependent distribution and then goes to sleep for
that time gap;

. When a node wakes up, if its lifetime has not

expired yet with probability p the node uses the
random-random social triangle-closing model,
otherwise it uses the tot-checkins — degree
mobility- based closure.

. The node repeats step 4.



Degree and link length distribution
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Friend distance and triangle length
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Understanding community evolution
and role of places

5 B UNIVERSITY OF A Place-focused Model for Social Network Formation in Cities. Chloé Brown, Anastasios

P CAMBRIDGE Noulas, Cecilia Mascolo, Vincent Blondel. NetMob 2013. Boston, MA. May 2013.




Place-friend vs social networks

* People who have checked in at
a place in a given city, and their
friends who have also checked
in at those places.

What do these place-friend
networks look like?

%1 UNIVERSITY OF
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foursquare 2

FRIENDS

JennaR.
at Starlight Diner
0S ANGELES, CA

18 mins ago '

You, Melissa R, Christen S, Max P
Paul S: Their grilled cheese is the best!

Ly Matt H.
at Deschenes Rapids
OTTAWA DIVISION, ON

Quick walk after lunch




Place-friend networks

 Degree: power-law distribution
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Distribution of community sizes
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Black: social network E :
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Intra-community links

Proportion of communities having
intra-community ties which are place
friends.

More than 30% of social
communities have less than 10%

placefriends.

More than 80% of local communities
have more than 90% placefriends.

Community Detection on the
social graph might not capture
local communities.
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Temporal community evolution

FORMED EDGES

Number of appearing links
inside communities wrt to
random appearance of
links:

Local communities could
be very good predictors.

SOCIAL LOCAL

25.6 0.62 70.7 0.78
FRIENDS -> PLACEFIRENDS

SOCIAL LOCAL

1.04

O

0.93

Oe

1.88

0.82

Number of placefriends
appearing: local
communities are again
good predictors.
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Power-law
distribution of
place
popularity.
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The role of places
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Places vital
for tie formation

>70% of triangles
have one place
shared between all
three people.

Clustering around certain
places

These places could act as
foci for tie formation...

5 UNIVERSITY OF
4% CAMBRIDGE




Role of categories...
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Thanks! Questions?

Select Cities

Cecilia Mascolo

@cecim
cecilia.mascolo@cl.cam.ac.uk
www.cl.cam.ac.uk/users/cm542
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