
Evolving	  geo-‐temporal	  social	  
networks	  and	  their	  applica6ons	  

Cecilia	  Mascolo	  
Computer	  Laboratory	  

	  
Networks	  Day	  

May	  2013,	  Cambridge,	  UK.	  









Geo-‐social	  network	  analysis	  	  
can	  lead	  to	  insights	  	  
into	  social	  behaviour	  



Foursquare	  Places	  (London)	  



Foursquare	  Dynamics	  



What	  can	  we	  study	  with	  	  
this	  type	  of	  data?	  

•  Rela6onship	  of	  friendship	  and	  distance	  
•  Rela6onship	  of	  interac6on	  and	  distance	  
•  Human	  mobility	  and	  role	  of	  places	  
•  Models	  for	  geo-‐social	  network	  evolu<on	  
•  Evolu<on	  of	  communi<es	  in	  space	  

•  Applica6ons:	  
–  Recommenda6ons,	  adver6sement	  
– Urban	  planning	  
–  Epidemics	  control	  



Human	  Mobility	  and	  Role	  of	  Places	  

A	  tale	  of	  many	  ci<es:	  universal	  paBerns	  in	  human	  urban	  mobility.	  
Anastasios	  Noulas,	  Salvatore	  Scellato,	  Renaud	  LambioTe,	  Massimiliano	  Pon6l,	  Cecilia	  
Mascolo.	  In	  PLoS	  ONE.	  PLoS	  ONE	  7(5):	  e37027.	  doi:10.1371/journal.pone.0037027.	  	  



Samuel	  A.	  Stouffer	  	  
Stouffer's	  law	  of	  intervening	  opportuni<es	  states,	  "The	  number	  of	  persons	  
going	  a	  given	  distance	  is	  directly	  propor8onal	  to	  the	  number	  of	  opportuni8es	  at	  
that	  distance	  and	  inversely	  propor8onal	  to	  the	  number	  of	  intervening	  
opportuni8es."	  *	  

*	  S.	  Stouffer	  (1940)	  Intervening	  opportuni6es:	  A	  theory	  rela6ng	  mobility	  and	  distance,	  American	  Sociological	  Review	  
5,	  845-‐867	  

Empirically proved over migration 
data from Cleveland. 
Is it true in our data? 



The	  importance	  of	  density	  

	  Place density by far more important 
than city area size with respect to 

mean length of human movements.



Rank	  distance	  

u	  



Rank	  universality	  

 The rank of all cities collapses to a single line. We have measured a power law exponent α = 0.84 ± 0.07 



A	  new	  model	  for	  urban	  mobility	  



Simula6on	  results	  ...	  



Modelling	  Geo	  Social	  	  
Network	  Evolu<on	  

Evolu<on	  of	  a	  Loca<on-‐based	  Online	  Social	  Network:	  Analysis	  and	  Models.	  Mili6adis	  
Allamanis,	  Salvatore	  Scellato	  and	  Cecilia	  Mascolo.	  In	  Proceedings	  of	  ACM	  Internet	  
Measurement	  Conference	  (IMC	  2012).	  Boston,	  MA.	  November	  2012.	  	  



•  How	  would	  Foursquare	  evolve	  in	  2	  months?	  
•  What	  are	  the	  factor	  that	  shape	  geo-‐social	  network	  

	  evolu6on?	  
•  Why	  would	  we	  be	  interested	  in	  forecas6ng	  

evolu6on?	  
•  Design	  of	  distributed	  storage	  solu6ons.	  
•  Delivery	  of	  user	  generated	  content.	  
•  Recommenda6on.	  	  

	  

Geo-‐Social	  network	  evolu6on...	  



Modelling	  the	  	  
growth	  of	  (online)	  social	  networks	  	  

•  A	  common	  feature	  of	  social	  (and	  
other)	  networks	  is	  a	  skewed	  degree	  
distribu6on,	  and	  preferen<al	  
aBachment	  can	  reproduce	  it:	  
popular	  users	  aTract	  more	  links.	  

•  This	  fails	  to	  generates	  triangles,	  
which	  are	  instead	  present:	  triadic	  
closure	  needs	  to	  be	  introduced.	  

•  Several	  varia6ons	  of	  these	  ideas	  
have	  been	  explored	  to	  model	  social	  
networks.	  



ATachment	  in	  geo-‐social	  networks	  



Temporal	  evolu6on	  of	  a	  	  
spa6al	  social	  network	  

•  Daily	  snapshots	  of	  Gowalla	  data	  
May	  to	  Aug.	  2010.	  Informa6on	  
about	  user	  profiles,	  	  friends	  and	  
check-‐ins.	  	  

•  We	  study	  temporal	  network	  
growth:	  

–  	  social	  edges	  crea6on	  and	  
speed	  

– social	  triangles	  crea6on	  	  
– mobility	  and	  space	  impact	  

Properties at the end of 
measurement period

Nodes 122,414

Social links 580,446

Average degree 9.48
Average clustering 

coefficient
0.254

Average distance 
between friends [km]

1,792

Average distance 
between users [km]

5,663
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Figure 3: Average and median geographic span gap
of the k-th edge created by a node as a function of
k.

km. The median value shifts in accordance with k, increas-
ing from 150 km to more than 900 km for higher degrees.
These findings are compatible with a gravity model where
node degree and geographic distance simultaneously influ-
ence social connections created over space, as we will see in
the next section.

3.5 Evaluation of attachment models
With our analysis we have discovered that individual node

properties and geographic distance a�ect how edges are cre-
ated. Our aim is now to understand what type of edge at-
tachment mechanisms better explain the temporal evolution
of the network.

We deliberately choose simple models, since our goal is
not to accurately reproduce the temporal evolution of the
network but rather to understand which factors mainly drive
its growth. We consider 4 di�erent edge attachment models,
each one with a single parameter �:

D: the probability of creating an edge with node n is pro-
portional to a power � of its degree: kn(t)

�

A: the probability of creating an edge with node n is pro-
portional to a power � of its age: at(n)

�

S: the probability of creating an edge with node n is in-
versely proportional to a power � of its spatial distance
from source i: D��

in

DS: the probability of creating an edge with node n is pro-
portional to its degree and inversely proportional to a
power � of its spatial distance from i: kn(t)D

��
in

Figure 4 displays the log-likelihood values obtained by
each model as a function of the parameter �. First, we note
that the models S and DS, which incorporate geographic dis-
tance, have higher log-likelihood than the other two models
D and A, with the maximum log-likelihood achieved by DS.
The maximum log-likelihood for DS is achieved for � ⇤ 0.6,
which is in agreement with the results obtained measuring
Pgeo(d). Node age does not seem a key factor for edge at-
tachment, as the model A shows decreasing values of log-
likelihood for values of � between 0 and 2, with its maxi-
mum log-likelihood of �4.4 ⇥ 106 reached instead only for
� = �0.8, failing to outperform S and DS. Indeed, we have
tested models which also combine node age with geographic
distance and node degree, but they do not exhibit significant
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Figure 4: Log-likelihood of each edge attachment
model as a function of their parameter �. The grav-
ity model DS outperforms all the others.

improvements with respect to the models without node age.
Hence, it seems that the main driving factors, of those ex-
amined, in edge attachment are node degree and geographic
distance and that a gravity model which combines them is
the most suitable option.

4. SOCIAL TRIADIC CLOSURE
The edge attachment mechanisms previously investigated

only take into account the influence of global network prop-
erties on new edge creation. However, local network prop-
erties can be equally or more important: for instance, new
links tend to connect users that already share friends, cre-
ating social triangles that are extremely common on social
networks [19]. This mechanism, where a node just copies
a connection from a node it is already connected to, has
turned out to be essential to reproduce the structure ob-
served in many networks [25]. Hence, in this section our
aim is to study the extent to which new links generate so-
cial triangles and whether di�erent models based on local
network properties can reproduce the patterns observed in
the data.

4.1 Measuring triangle creation
Social connections tend to link together individuals that

are already at close social distance: the vast majority of new
links tend to be between nodes that already share at least
a connection, thus only 2 hops away from each other, with
larger social distances exponentially less likely [17]. We no-
tice a similar pattern in our data: Figure 5(a) shows that
the number of edges Eh that connect nodes h hops away
exponentially decays with h. Furthermore, many edges also
connect nodes that were not in the same connected compo-
nent, as when a new node joins the network and creates its
first link.
A better understanding of this process can be achieved by

considering not only how many new links connect nodes h
hops away, but also considering the number of nodes at that
social distance. In fact, since Eh exponentially decreases
with h and the number of available nodes increases with h,
the probability Ph that a new link spans h hops must be
decreasing much faster than exponentially. More precisely,
we compute Ph as

Ph =
|{et : et = (i, j) ⌅ dt�1(i, j) = h}|�

t |{n : dt�1(i, n) = h}| (6)

Global	  aTachment	  models	  
•  D:	  propor6onal	  to	  a	  power	  
α	  of	  the	  degree	  of	  user	  B	  

•  A:	  prop.	  to	  a	  power	  α	  of	  the	  
age	  of	  user	  B	  

•  S:	  inversely	  prop.	  to	  a	  
power	  α	  of	  the	  geographic	  
distance	  between	  	  A	  and	  B	  

•  DS:	  prop.	  to	  the	  degree	  of	  
user	  B	  and	  inversely	  prop.	  
to	  a	  power	  α	  of	  the	  
geographic	  distance	  
between	  A	  and	  B.	  

For each new edge created from 
user A to user B we compute the 

probability of being created 
according to different models (for 

different parameters).



Predominance	  of	  triangle-‐closing	  links	  
Number of new links

New edges are exponentially 
more likely to connect people 

sharing at least one friend, 
creating social triangles. 
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Social	  aTachment	  



source node 

Social	  aTachment	  



Social	  aTachment	  



intermediate node 

Social	  aTachment	  



Social	  aTachment	  



target node 

Social	  aTachment	  



Social	  aTachment	  



Social	  aTachment	  models	  

random shared degree distance gravity

random 12.34 9.48 -3.47 -28.17 -35.26

shared 14.54 11.47 -0.95 -24.74 -34.46

degree 7.33 5.16 -6.79 -25.17 -41.98

distance -0.92 -3.70 -16.94 -39.32 -41.53

gravity 2.71 0.25 -12.11 -33.01 -43.18

Percentage improvement on random choice (2 hop)

Intermediate node 
models

Triadic closure is mainly driven 
by social processes, while 

geographic distance is not an 
important factor.



30%	  of	  new	  edges	  are	  established	  between	  users	  that	  share	  at	  
least	  one	  common	  place.	  

10%	  of	  new	  links	  are	  created	  between	  users	  that	  do	  share	  
common	  places,	  but	  no	  common	  friends	  

A	  social	  only	  model	  would	  fail	  to	  reproduce	  that	  users	  create	  new	  social	  
connec6ons	  beyond	  their	  2-‐hop	  neighborhood.	  

What	  about	  geography?	  



Effect	  of	  distance	  

Distance of new links

Geographic proximity appears complementary 
to social closeness: being close in space 

connects people at large social distances.
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Mobility-‐driven	  aTachment	  



Select	  a	  visited	  place:	  
•  Visited	  by	  many	  friends	  
•  Visited	  by	  the	  user	  many	  6mes	  
•  Very	  popular	  
•  Close	  
	  
	  

Select	  users	  who	  visit	  the	  same	  places	  

Select	  a	  user:	  
•  Popular	  
•  Ac6ve	  
•  Close	  to	  the	  place	  

Choosing	  friends	  geographically	  



Place-‐user	  choice	  

random degree deg-di�usion user-checkins tot-checkins inv-tot-checkins distance gravity
random 0.28 6.88 9.24 0.16 -17.02 -4.51 -19.36 -7.04
friends 4.70 11.60 13.63 4.74 -10.63 -1.56 -14.88 -1.71

user-checkins 0.05 6.59 8.94 -0.03 -17.27 -4.80 -19.69 -7.41
tot-checkins 6.09 13.13 15.18 6.14 -9.29 0.04 -13.15 -0.02
tot-users 5.10 12.33 14.33 5.16 -9.96 -1.08 -14.19 -0.84

place-distance -23.41 -15.57 -13.21 -23.56 -40.82 -28.27 -43.67 -30.17
place-gravity 0.37 7.22 9.46 0.32 -16.26 -5.29 -19.60 -6.81

Table 3: Performance of mobility-driven closure models: on each row there is a model to pick the intermediate
place and on each column a model to then pick the target node. The value in each cell gives the percentage
improvement over the baseline, which is the log-likelihood of choosing a node at random among all the nodes
that share at least one place with the source.
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Figure 7: Complementary Cumulative Distribution
Function (CCDF) of node lifespan and exponential
fit.

connect. The tot-checkins-degree model has a similar but
slightly inferior performance, yet it is simpler and computa-
tionally faster.

In addition to the models presented in Table 3, we exper-
imented with variations of tot-users and tot-checkins where
we use a probability of attachment inversely proportional
to the total number of users or check-ins. All these models
provided inferior performance compared to the baseline.

6. TEMPORAL EVOLUTION
In this section we study how users create new connections

as they spend more time on the network. We study the
amount of time users remain active for, their lifespan; then,
we investigate the inter-edge temporal gap between the cre-
ation of consecutive edges. In this section we consider only
users that joined the service after our measurement process
started, in order to observe their behavior from the very first
moment.

6.1 Node lifespan
We define the lifespan of a node as the di�erence between

the time the node created the last and the first edge. Fig-
ure 7 plots the distribution of lifespan for all users: the
distribution shows an approximately exponential behavior,
with a deviation only at longer lifespans for few users who
were early adopters and started using the service from the
very first days. The fit is reasonably accurate for a wide
range of lifespan values.
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Figure 8: Probability Distribution Function (PDF)
of ⇤(1), the temporal gap elapsing between the time
when the first and the second edge are created by
a user. The fits show a power law, an exponentially
truncated power law and a shifted exponential.

6.2 Inter-edge temporal gap
Di�erent users can show significant di�erences in the pace

they add new edges: users with higher degree create new
ties at a faster rate. Thus, we study ⇤i(k), the temporal gap
between the k-th and k + 1-th edges of user i, for di�erent
values of k.
Figure 8 displays the probability distribution of ⇤(1), the

amount of time between the first and the second edges cre-
ated by a user. Even though many users add their second
edge after a few days, some wait for several weeks. The dis-
tribution can be reproduced by di�erent functional forms:
an exponentially truncated power law ⇤(1)��1exp(�⇤(1)/⇥1)
yields a slightly higher log-likelihood than a pure power-law,
a shifted exponential and an exponential; the average log-
likelihood improvement over the exponential fit is about 5%.
This result also holds for di�erent values of k.
Then, we study the e�ect of current degree k: in partic-

ular, we are interested in how the probability distribution
of ⇤(k) changes with k. A first indication is given in Fig-
ure 9(a), which plots the average temporal gap ⇥⇤(k)⇤ be-
tween the k-th and k + 1-th edges for di�erent values of k:
users with higher degrees tend to wait, on average, for a
shorter amount of time. In fact, users wait on average 20
days before adding their second edge but only 7 days when
they have about 100 friends. While �k tends to be unre-
lated to k, the exponential cut-o� ⇥k becomes smaller as
k grows larger, as seen in Figure 9(b). The final e�ect is
that nodes with higher degrees are more likely to wait for

Choice	  of	  Place	   Choice	  of	  user	  

proportional to user’s degree and inversely 
proportional the logarithm of user’s total 

number of visited places;



Global	   gravity	  model	  
Distance	  &	  degree	  are	  important	  on	  a	  
global	  level	  

Local	  Social	   random-‐random	  model	  
Triangle	  closure	  not	  affected	  by	  distance	  

Mobility-‐driven	   tot-‐checkins	  -‐	  degree	  model	  
Popular	  places	  are	  important	  
Small-‐scale	  preferen8al	  aAachment	  

Puing	  it	  all	  together	  



Puing	  all	  pieces	  together:	  	  
a	  new	  growth	  model	  

1.  A	  new	  node	  joins	  the	  network	  and	  posi6ons	  itself	  
over	  the	  space;	  

2.  It	  samples	  its	  life<me	  from	  an	  exponen6al	  
distribu6on;	  

3.  The	  new	  node	  adds	  its	  first	  edge	  according	  to	  a	  
preferen<al	  aBachment	  or	  gravity	  model;	  

4.  The	  node	  samples	  a	  <me	  gap	  from	  the	  degree-‐
dependent	  distribu6on	  and	  then	  goes	  to	  sleep	  for	  
that	  6me	  gap;	  

5.  When	  a	  node	  wakes	  up,	  if	  its	  life6me	  has	  not	  
expired	  yet	  	  with	  probability	  p	  the	  node	  uses	  the	  
random−random	  social	  triangle-‐closing	  model,	  
otherwise	  it	  uses	  the	  tot-‐checkins	  −	  degree	  
mobility-‐	  based	  closure.	  

6.  The	  node	  repeats	  step	  4.	  



Degree	  and	  link	  length	  distribu6on	  

Degree distribution is generally 
similar for all models

Link length shows the precision of 
gravity based models



Friend	  distance	  and	  triangle	  length	  
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Figure 12: Average geographic friend distance as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).

100 101 102 103 104

Node degree

101

102

103

104

105

Tr
ia

ng
le

le
ng

th
[k

m
]

Data
G
P

GM
PM

(a) Without global attachment

100 101 102 103 104

Node degree

101

102

103

104

105

Tr
ia

ng
le

le
ng

th
[k

m
]

Data
G
P

GM
PM

(b) With global attachment

Figure 13: Average geographic triangle length as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).

attributed to the latent geographic information embedded
in user check-ins. The e�ect of global attachment is even
stronger, as it enhances the accuracy of gravity-based mod-
els, while also reducing the validity of preferential attach-
ment models. These results confirm that the e�ect of ge-
ographic distance can not be neglected when social net-
works are studied and modeled: preferential attachment
mechanisms need to be modified into gravity-based mecha-
nisms, which are able to correctly balance the e�ects of node
attractiveness and the connection costs imposed by spa-
tial distance. Furthermore, mobility-based closure improves
model accuracy, o�ering additional information about the
geographic whereabouts of online users.

7.3 Implications
The importance of our findings goes beyond the definition

of accurate models of network evolution. Our results show
that the e�ect of geographic distance cannot be neglected
when online social networks are studied and modeled. In

reality, preferential attachment and triadic closure together
are already able to reproduce the global social properties
observed in real social networks, namely the degree distribu-
tion and the level of clustering. However, neglecting spatial
information about where users are located fails to account
for the e�ect of distance. In real systems users preferentially
connect over short distances, resulting in a considerable frac-
tion of short-range ties; instead, ignoring spatial constraints
would predict an unlikely majority of long-range connec-
tions. This goes against empirical evidence, both in o⇤ine
and online social systems.
Our findings support the idea that distance has a simple

e�ect on the creation of social ties: the probability of connec-
tion between two individuals decreases as a negative power of
the spatial distance between them. Yet, this e�ect must be
combined with a process based on“popularity”or“visibility”
that introduces heterogeneity across users, such as attach-
ment to the best connected nodes, in order to fully recreate
the self-reinforcing mechanisms that lead to the scale-free
degree distributions observed in social graphs.
Gravity mechanisms provide an elegant and insightful way
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Figure 12: Average geographic friend distance as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).
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Figure 13: Average geographic triangle length as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).

attributed to the latent geographic information embedded
in user check-ins. The e�ect of global attachment is even
stronger, as it enhances the accuracy of gravity-based mod-
els, while also reducing the validity of preferential attach-
ment models. These results confirm that the e�ect of ge-
ographic distance can not be neglected when social net-
works are studied and modeled: preferential attachment
mechanisms need to be modified into gravity-based mecha-
nisms, which are able to correctly balance the e�ects of node
attractiveness and the connection costs imposed by spa-
tial distance. Furthermore, mobility-based closure improves
model accuracy, o�ering additional information about the
geographic whereabouts of online users.

7.3 Implications
The importance of our findings goes beyond the definition

of accurate models of network evolution. Our results show
that the e�ect of geographic distance cannot be neglected
when online social networks are studied and modeled. In

reality, preferential attachment and triadic closure together
are already able to reproduce the global social properties
observed in real social networks, namely the degree distribu-
tion and the level of clustering. However, neglecting spatial
information about where users are located fails to account
for the e�ect of distance. In real systems users preferentially
connect over short distances, resulting in a considerable frac-
tion of short-range ties; instead, ignoring spatial constraints
would predict an unlikely majority of long-range connec-
tions. This goes against empirical evidence, both in o⇤ine
and online social systems.
Our findings support the idea that distance has a simple

e�ect on the creation of social ties: the probability of connec-
tion between two individuals decreases as a negative power of
the spatial distance between them. Yet, this e�ect must be
combined with a process based on“popularity”or“visibility”
that introduces heterogeneity across users, such as attach-
ment to the best connected nodes, in order to fully recreate
the self-reinforcing mechanisms that lead to the scale-free
degree distributions observed in social graphs.
Gravity mechanisms provide an elegant and insightful way

Friend distance and triangle length 
of gravity based models 

correlation with degree are 
matching the data



Understanding	  community	  evolu<on	  
and	  role	  of	  places	  

A	  Place-‐focused	  Model	  for	  Social	  Network	  Forma<on	  in	  Ci<es.	  Chloë	  Brown,	  Anastasios	  
Noulas,	  Cecilia	  Mascolo,	  Vincent	  Blondel.	  NetMob	  2013.	  Boston,	  MA.	  May	  2013.	  



Place-‐friend	  vs	  social	  networks	  

•  People	  who	  have	  checked	  in	  at	  
a	  place	  in	  a	  given	  city,	  and	  their	  
friends	  who	  have	  also	  checked	  
in	  at	  those	  places.	  

What do these place-friend 
networks look like?



Place-‐friend	  networks	  

•  Degree:	  power-‐law	  distribu6on	  

1 10 100
Number of friends

1

10

100

1000

10000

N
um

be
r o

f p
eo

pl
e

Atlanta
Boston
Chicago
Minneapolis
Seattle



Distribu6on	  of	  community	  sizes	  

Black: social network 
communities.

Red: place-friend 
(local) communities.


Size of local 

communities is 
consistently smaller.



Intra-‐community	  links	  
Proportion of communities having 
intra-community ties which are place 
friends.

More than 30% of  social 
communities have less than 10% 
placefriends.

More than 80% of local communities 
have more than 90% placefriends.

Community Detection on the 
social graph might not capture 
local communities.



Temporal	  community	  evolu6on	  

Number of appearing links 
inside communities wrt to 

random appearance of 
links:

Local communities could 
be very good predictors.

Number of placefriends 
appearing: local 

communities are again 
good predictors.



The	  role	  of	  places	  

Power-law 
distribution of 
place 
popularity.
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Places	  vital	  	  
for	  6e	  forma6on	  

>70%	  of	  triangles	  
have	  one	  place	  
shared	  between	  all	  
three	  people.	  
	  

Clustering around certain 
places

These places could act as 
foci for tie formation…





Role	  of	  categories…	  
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Probability of 
friendship between 

colocated people at 
places in each 

Foursquare category

Some kinds of places 
are much more 

likely to reinforce 
friendship than 

others.

•  What	  is	  the	  role	  of	  place	  categories?	  



Friend	  
recommeda6on	  

Exploiting Place Features in Link Prediction on Location-based Social 
Networks, Salvatore Scellato, Anastasios Noulas, Cecilia Mascolo. In Proceedings 
of 17th ACM International Conference on Knowledge Discovery and Data Mining 
(KDD 2011). San Diego, USA. August 2011.
The Importance of Being Placefriends: Discovering Location-focused Online 
Communities. Chloë Brown, Vincenzo Nicosia, Salvatore Scellato, Anastasios 
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(WOSN 2012). Helsinki, Finland. August 2012.





Place	  
recommeda6on	  

Mining User Mobility Features for Next Place Prediction in Location-based 
Services. Anastasios Noulas, Salvatore Scellato, Neal Lathia and Cecilia Mascolo. 
In Proceedings of IEEE International Conference on Data Mining (ICDM 2012). 
Short Paper. Brussels, Belgium. December 2012.
A Random Walk Around the City: New Venue Recommendation in Location-
Based Social Networks. Anastasios Noulas, Salvatore Scellato, Neal Lathia and 
Cecilia Mascolo. In Proceedings of ASE/IEEE International Conference on Social 
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More	  modelling	  
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