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Geo-­‐social	
  network	
  analysis	
  	
  
can	
  lead	
  to	
  insights	
  	
  
into	
  social	
  behaviour	
  



Foursquare	
  Places	
  (London)	
  



Foursquare	
  Dynamics	
  



What	
  can	
  we	
  study	
  with	
  	
  
this	
  type	
  of	
  data?	
  

•  Rela6onship	
  of	
  friendship	
  and	
  distance	
  
•  Rela6onship	
  of	
  interac6on	
  and	
  distance	
  
•  Human	
  mobility	
  and	
  role	
  of	
  places	
  
•  Models	
  for	
  geo-­‐social	
  network	
  evolu<on	
  
•  Evolu<on	
  of	
  communi<es	
  in	
  space	
  

•  Applica6ons:	
  
–  Recommenda6ons,	
  adver6sement	
  
– Urban	
  planning	
  
–  Epidemics	
  control	
  



Human	
  Mobility	
  and	
  Role	
  of	
  Places	
  

A	
  tale	
  of	
  many	
  ci<es:	
  universal	
  paBerns	
  in	
  human	
  urban	
  mobility.	
  
Anastasios	
  Noulas,	
  Salvatore	
  Scellato,	
  Renaud	
  LambioTe,	
  Massimiliano	
  Pon6l,	
  Cecilia	
  
Mascolo.	
  In	
  PLoS	
  ONE.	
  PLoS	
  ONE	
  7(5):	
  e37027.	
  doi:10.1371/journal.pone.0037027.	
  	
  



Samuel	
  A.	
  Stouffer	
  	
  
Stouffer's	
  law	
  of	
  intervening	
  opportuni<es	
  states,	
  "The	
  number	
  of	
  persons	
  
going	
  a	
  given	
  distance	
  is	
  directly	
  propor8onal	
  to	
  the	
  number	
  of	
  opportuni8es	
  at	
  
that	
  distance	
  and	
  inversely	
  propor8onal	
  to	
  the	
  number	
  of	
  intervening	
  
opportuni8es."	
  *	
  

*	
  S.	
  Stouffer	
  (1940)	
  Intervening	
  opportuni6es:	
  A	
  theory	
  rela6ng	
  mobility	
  and	
  distance,	
  American	
  Sociological	
  Review	
  
5,	
  845-­‐867	
  

Empirically proved over migration 
data from Cleveland. 

Is it true in our data? 




The	
  importance	
  of	
  density	
  

	
  Place density by far more important 
than city area size with respect to 

mean length of human movements.




Rank	
  distance	
  

u	
  



Rank	
  universality	
  

 The rank of all cities collapses to a single line.

 We have measured a power law exponent α = 0.84 ± 0.07 




A	
  new	
  model	
  for	
  urban	
  mobility	
  



Simula6on	
  results	
  ...	
  



Modelling	
  Geo	
  Social	
  	
  
Network	
  Evolu<on	
  

Evolu<on	
  of	
  a	
  Loca<on-­‐based	
  Online	
  Social	
  Network:	
  Analysis	
  and	
  Models.	
  Mili6adis	
  
Allamanis,	
  Salvatore	
  Scellato	
  and	
  Cecilia	
  Mascolo.	
  In	
  Proceedings	
  of	
  ACM	
  Internet	
  
Measurement	
  Conference	
  (IMC	
  2012).	
  Boston,	
  MA.	
  November	
  2012.	
  	
  



•  How	
  would	
  Foursquare	
  evolve	
  in	
  2	
  months?	
  
•  What	
  are	
  the	
  factor	
  that	
  shape	
  geo-­‐social	
  network	
  

	
  evolu6on?	
  
•  Why	
  would	
  we	
  be	
  interested	
  in	
  forecas6ng	
  

evolu6on?	
  
•  Design	
  of	
  distributed	
  storage	
  solu6ons.	
  
•  Delivery	
  of	
  user	
  generated	
  content.	
  
•  Recommenda6on.	
  	
  

	
  

Geo-­‐Social	
  network	
  evolu6on...	
  



Modelling	
  the	
  	
  
growth	
  of	
  (online)	
  social	
  networks	
  	
  

•  A	
  common	
  feature	
  of	
  social	
  (and	
  
other)	
  networks	
  is	
  a	
  skewed	
  degree	
  
distribu6on,	
  and	
  preferen<al	
  
aBachment	
  can	
  reproduce	
  it:	
  
popular	
  users	
  aTract	
  more	
  links.	
  

•  This	
  fails	
  to	
  generates	
  triangles,	
  
which	
  are	
  instead	
  present:	
  triadic	
  
closure	
  needs	
  to	
  be	
  introduced.	
  

•  Several	
  varia6ons	
  of	
  these	
  ideas	
  
have	
  been	
  explored	
  to	
  model	
  social	
  
networks.	
  



ATachment	
  in	
  geo-­‐social	
  networks	
  



Temporal	
  evolu6on	
  of	
  a	
  	
  
spa6al	
  social	
  network	
  

•  Daily	
  snapshots	
  of	
  Gowalla	
  data	
  
May	
  to	
  Aug.	
  2010.	
  Informa6on	
  
about	
  user	
  profiles,	
  	
  friends	
  and	
  
check-­‐ins.	
  	
  

•  We	
  study	
  temporal	
  network	
  
growth:	
  

–  	
  social	
  edges	
  crea6on	
  and	
  
speed	
  

– social	
  triangles	
  crea6on	
  	
  
– mobility	
  and	
  space	
  impact	
  

Properties at the end of 
measurement period


Nodes
 122,414


Social links
 580,446


Average degree
 9.48

Average clustering 

coefficient

0.254


Average distance 
between friends [km]


1,792


Average distance 
between users [km]


5,663
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Figure 3: Average and median geographic span gap
of the k-th edge created by a node as a function of
k.

km. The median value shifts in accordance with k, increas-
ing from 150 km to more than 900 km for higher degrees.
These findings are compatible with a gravity model where
node degree and geographic distance simultaneously influ-
ence social connections created over space, as we will see in
the next section.

3.5 Evaluation of attachment models
With our analysis we have discovered that individual node

properties and geographic distance a�ect how edges are cre-
ated. Our aim is now to understand what type of edge at-
tachment mechanisms better explain the temporal evolution
of the network.

We deliberately choose simple models, since our goal is
not to accurately reproduce the temporal evolution of the
network but rather to understand which factors mainly drive
its growth. We consider 4 di�erent edge attachment models,
each one with a single parameter �:

D: the probability of creating an edge with node n is pro-
portional to a power � of its degree: kn(t)

�

A: the probability of creating an edge with node n is pro-
portional to a power � of its age: at(n)

�

S: the probability of creating an edge with node n is in-
versely proportional to a power � of its spatial distance
from source i: D��

in

DS: the probability of creating an edge with node n is pro-
portional to its degree and inversely proportional to a
power � of its spatial distance from i: kn(t)D

��
in

Figure 4 displays the log-likelihood values obtained by
each model as a function of the parameter �. First, we note
that the models S and DS, which incorporate geographic dis-
tance, have higher log-likelihood than the other two models
D and A, with the maximum log-likelihood achieved by DS.
The maximum log-likelihood for DS is achieved for � ⇤ 0.6,
which is in agreement with the results obtained measuring
Pgeo(d). Node age does not seem a key factor for edge at-
tachment, as the model A shows decreasing values of log-
likelihood for values of � between 0 and 2, with its maxi-
mum log-likelihood of �4.4 ⇥ 106 reached instead only for
� = �0.8, failing to outperform S and DS. Indeed, we have
tested models which also combine node age with geographic
distance and node degree, but they do not exhibit significant
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Figure 4: Log-likelihood of each edge attachment
model as a function of their parameter �. The grav-
ity model DS outperforms all the others.

improvements with respect to the models without node age.
Hence, it seems that the main driving factors, of those ex-
amined, in edge attachment are node degree and geographic
distance and that a gravity model which combines them is
the most suitable option.

4. SOCIAL TRIADIC CLOSURE
The edge attachment mechanisms previously investigated

only take into account the influence of global network prop-
erties on new edge creation. However, local network prop-
erties can be equally or more important: for instance, new
links tend to connect users that already share friends, cre-
ating social triangles that are extremely common on social
networks [19]. This mechanism, where a node just copies
a connection from a node it is already connected to, has
turned out to be essential to reproduce the structure ob-
served in many networks [25]. Hence, in this section our
aim is to study the extent to which new links generate so-
cial triangles and whether di�erent models based on local
network properties can reproduce the patterns observed in
the data.

4.1 Measuring triangle creation
Social connections tend to link together individuals that

are already at close social distance: the vast majority of new
links tend to be between nodes that already share at least
a connection, thus only 2 hops away from each other, with
larger social distances exponentially less likely [17]. We no-
tice a similar pattern in our data: Figure 5(a) shows that
the number of edges Eh that connect nodes h hops away
exponentially decays with h. Furthermore, many edges also
connect nodes that were not in the same connected compo-
nent, as when a new node joins the network and creates its
first link.
A better understanding of this process can be achieved by

considering not only how many new links connect nodes h
hops away, but also considering the number of nodes at that
social distance. In fact, since Eh exponentially decreases
with h and the number of available nodes increases with h,
the probability Ph that a new link spans h hops must be
decreasing much faster than exponentially. More precisely,
we compute Ph as

Ph =
|{et : et = (i, j) ⌅ dt�1(i, j) = h}|�

t |{n : dt�1(i, n) = h}| (6)

Global	
  aTachment	
  models	
  
•  D:	
  propor6onal	
  to	
  a	
  power	
  
α	
  of	
  the	
  degree	
  of	
  user	
  B	
  

•  A:	
  prop.	
  to	
  a	
  power	
  α	
  of	
  the	
  
age	
  of	
  user	
  B	
  

•  S:	
  inversely	
  prop.	
  to	
  a	
  
power	
  α	
  of	
  the	
  geographic	
  
distance	
  between	
  	
  A	
  and	
  B	
  

•  DS:	
  prop.	
  to	
  the	
  degree	
  of	
  
user	
  B	
  and	
  inversely	
  prop.	
  
to	
  a	
  power	
  α	
  of	
  the	
  
geographic	
  distance	
  
between	
  A	
  and	
  B.	
  

For each new edge created from 
user A to user B we compute the 

probability of being created 
according to different models (for 

different parameters).




Predominance	
  of	
  triangle-­‐closing	
  links	
  
Number of new links


New edges are exponentially 
more likely to connect people 

sharing at least one friend, 
creating social triangles. 
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Social	
  aTachment	
  



source node 

Social	
  aTachment	
  



Social	
  aTachment	
  



intermediate node 

Social	
  aTachment	
  



Social	
  aTachment	
  



target node 

Social	
  aTachment	
  



Social	
  aTachment	
  



Social	
  aTachment	
  models	
  

random
 shared
 degree
 distance
 gravity


random
 12.34
 9.48
 -3.47
 -28.17
 -35.26


shared
 14.54
 11.47
 -0.95
 -24.74
 -34.46


degree
 7.33
 5.16
 -6.79
 -25.17
 -41.98


distance
 -0.92
 -3.70
 -16.94
 -39.32
 -41.53


gravity
 2.71
 0.25
 -12.11
 -33.01
 -43.18


Percentage improvement on random choice (2 hop)


Intermediate node 
models


Triadic closure is mainly driven 
by social processes, while 

geographic distance is not an 
important factor.




30%	
  of	
  new	
  edges	
  are	
  established	
  between	
  users	
  that	
  share	
  at	
  
least	
  one	
  common	
  place.	
  

10%	
  of	
  new	
  links	
  are	
  created	
  between	
  users	
  that	
  do	
  share	
  
common	
  places,	
  but	
  no	
  common	
  friends	
  

A	
  social	
  only	
  model	
  would	
  fail	
  to	
  reproduce	
  that	
  users	
  create	
  new	
  social	
  
connec6ons	
  beyond	
  their	
  2-­‐hop	
  neighborhood.	
  

What	
  about	
  geography?	
  



Effect	
  of	
  distance	
  

Distance of new links


Geographic proximity appears complementary 
to social closeness: being close in space 

connects people at large social distances.
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Mobility-­‐driven	
  aTachment	
  



Select	
  a	
  visited	
  place:	
  
•  Visited	
  by	
  many	
  friends	
  
•  Visited	
  by	
  the	
  user	
  many	
  6mes	
  
•  Very	
  popular	
  
•  Close	
  
	
  
	
  

Select	
  users	
  who	
  visit	
  the	
  same	
  places	
  

Select	
  a	
  user:	
  
•  Popular	
  
•  Ac6ve	
  
•  Close	
  to	
  the	
  place	
  

Choosing	
  friends	
  geographically	
  



Place-­‐user	
  choice	
  

random degree deg-di�usion user-checkins tot-checkins inv-tot-checkins distance gravity
random 0.28 6.88 9.24 0.16 -17.02 -4.51 -19.36 -7.04
friends 4.70 11.60 13.63 4.74 -10.63 -1.56 -14.88 -1.71

user-checkins 0.05 6.59 8.94 -0.03 -17.27 -4.80 -19.69 -7.41
tot-checkins 6.09 13.13 15.18 6.14 -9.29 0.04 -13.15 -0.02
tot-users 5.10 12.33 14.33 5.16 -9.96 -1.08 -14.19 -0.84

place-distance -23.41 -15.57 -13.21 -23.56 -40.82 -28.27 -43.67 -30.17
place-gravity 0.37 7.22 9.46 0.32 -16.26 -5.29 -19.60 -6.81

Table 3: Performance of mobility-driven closure models: on each row there is a model to pick the intermediate
place and on each column a model to then pick the target node. The value in each cell gives the percentage
improvement over the baseline, which is the log-likelihood of choosing a node at random among all the nodes
that share at least one place with the source.
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Figure 7: Complementary Cumulative Distribution
Function (CCDF) of node lifespan and exponential
fit.

connect. The tot-checkins-degree model has a similar but
slightly inferior performance, yet it is simpler and computa-
tionally faster.

In addition to the models presented in Table 3, we exper-
imented with variations of tot-users and tot-checkins where
we use a probability of attachment inversely proportional
to the total number of users or check-ins. All these models
provided inferior performance compared to the baseline.

6. TEMPORAL EVOLUTION
In this section we study how users create new connections

as they spend more time on the network. We study the
amount of time users remain active for, their lifespan; then,
we investigate the inter-edge temporal gap between the cre-
ation of consecutive edges. In this section we consider only
users that joined the service after our measurement process
started, in order to observe their behavior from the very first
moment.

6.1 Node lifespan
We define the lifespan of a node as the di�erence between

the time the node created the last and the first edge. Fig-
ure 7 plots the distribution of lifespan for all users: the
distribution shows an approximately exponential behavior,
with a deviation only at longer lifespans for few users who
were early adopters and started using the service from the
very first days. The fit is reasonably accurate for a wide
range of lifespan values.
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Figure 8: Probability Distribution Function (PDF)
of ⇤(1), the temporal gap elapsing between the time
when the first and the second edge are created by
a user. The fits show a power law, an exponentially
truncated power law and a shifted exponential.

6.2 Inter-edge temporal gap
Di�erent users can show significant di�erences in the pace

they add new edges: users with higher degree create new
ties at a faster rate. Thus, we study ⇤i(k), the temporal gap
between the k-th and k + 1-th edges of user i, for di�erent
values of k.
Figure 8 displays the probability distribution of ⇤(1), the

amount of time between the first and the second edges cre-
ated by a user. Even though many users add their second
edge after a few days, some wait for several weeks. The dis-
tribution can be reproduced by di�erent functional forms:
an exponentially truncated power law ⇤(1)��1exp(�⇤(1)/⇥1)
yields a slightly higher log-likelihood than a pure power-law,
a shifted exponential and an exponential; the average log-
likelihood improvement over the exponential fit is about 5%.
This result also holds for di�erent values of k.
Then, we study the e�ect of current degree k: in partic-

ular, we are interested in how the probability distribution
of ⇤(k) changes with k. A first indication is given in Fig-
ure 9(a), which plots the average temporal gap ⇥⇤(k)⇤ be-
tween the k-th and k + 1-th edges for di�erent values of k:
users with higher degrees tend to wait, on average, for a
shorter amount of time. In fact, users wait on average 20
days before adding their second edge but only 7 days when
they have about 100 friends. While �k tends to be unre-
lated to k, the exponential cut-o� ⇥k becomes smaller as
k grows larger, as seen in Figure 9(b). The final e�ect is
that nodes with higher degrees are more likely to wait for

Choice	
  of	
  Place	
   Choice	
  of	
  user	
  

proportional to user’s degree and inversely 
proportional the logarithm of user’s total 

number of visited places;




Global	
   gravity	
  model	
  
Distance	
  &	
  degree	
  are	
  important	
  on	
  a	
  
global	
  level	
  

Local	
  Social	
   random-­‐random	
  model	
  
Triangle	
  closure	
  not	
  affected	
  by	
  distance	
  

Mobility-­‐driven	
   tot-­‐checkins	
  -­‐	
  degree	
  model	
  
Popular	
  places	
  are	
  important	
  
Small-­‐scale	
  preferen8al	
  aAachment	
  

Puing	
  it	
  all	
  together	
  



Puing	
  all	
  pieces	
  together:	
  	
  
a	
  new	
  growth	
  model	
  

1.  A	
  new	
  node	
  joins	
  the	
  network	
  and	
  posi6ons	
  itself	
  
over	
  the	
  space;	
  

2.  It	
  samples	
  its	
  life<me	
  from	
  an	
  exponen6al	
  
distribu6on;	
  

3.  The	
  new	
  node	
  adds	
  its	
  first	
  edge	
  according	
  to	
  a	
  
preferen<al	
  aBachment	
  or	
  gravity	
  model;	
  

4.  The	
  node	
  samples	
  a	
  <me	
  gap	
  from	
  the	
  degree-­‐
dependent	
  distribu6on	
  and	
  then	
  goes	
  to	
  sleep	
  for	
  
that	
  6me	
  gap;	
  

5.  When	
  a	
  node	
  wakes	
  up,	
  if	
  its	
  life6me	
  has	
  not	
  
expired	
  yet	
  	
  with	
  probability	
  p	
  the	
  node	
  uses	
  the	
  
random−random	
  social	
  triangle-­‐closing	
  model,	
  
otherwise	
  it	
  uses	
  the	
  tot-­‐checkins	
  −	
  degree	
  
mobility-­‐	
  based	
  closure.	
  

6.  The	
  node	
  repeats	
  step	
  4.	
  



Degree	
  and	
  link	
  length	
  distribu6on	
  

Degree distribution is generally 
similar for all models


Link length shows the precision of 
gravity based models




Friend	
  distance	
  and	
  triangle	
  length	
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(b) With global attachment

Figure 12: Average geographic friend distance as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).
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(b) With global attachment

Figure 13: Average geographic triangle length as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).

attributed to the latent geographic information embedded
in user check-ins. The e�ect of global attachment is even
stronger, as it enhances the accuracy of gravity-based mod-
els, while also reducing the validity of preferential attach-
ment models. These results confirm that the e�ect of ge-
ographic distance can not be neglected when social net-
works are studied and modeled: preferential attachment
mechanisms need to be modified into gravity-based mecha-
nisms, which are able to correctly balance the e�ects of node
attractiveness and the connection costs imposed by spa-
tial distance. Furthermore, mobility-based closure improves
model accuracy, o�ering additional information about the
geographic whereabouts of online users.

7.3 Implications
The importance of our findings goes beyond the definition

of accurate models of network evolution. Our results show
that the e�ect of geographic distance cannot be neglected
when online social networks are studied and modeled. In

reality, preferential attachment and triadic closure together
are already able to reproduce the global social properties
observed in real social networks, namely the degree distribu-
tion and the level of clustering. However, neglecting spatial
information about where users are located fails to account
for the e�ect of distance. In real systems users preferentially
connect over short distances, resulting in a considerable frac-
tion of short-range ties; instead, ignoring spatial constraints
would predict an unlikely majority of long-range connec-
tions. This goes against empirical evidence, both in o⇤ine
and online social systems.
Our findings support the idea that distance has a simple

e�ect on the creation of social ties: the probability of connec-
tion between two individuals decreases as a negative power of
the spatial distance between them. Yet, this e�ect must be
combined with a process based on“popularity”or“visibility”
that introduces heterogeneity across users, such as attach-
ment to the best connected nodes, in order to fully recreate
the self-reinforcing mechanisms that lead to the scale-free
degree distributions observed in social graphs.
Gravity mechanisms provide an elegant and insightful way
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Figure 12: Average geographic friend distance as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).
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Figure 13: Average geographic triangle length as a function of node degree for real data and di�erent models:
gravity-based (G), gravity-based with mobility-driven closure (GM), preferential attachment (P), preferential
attachment with mobility-driven closure (PM).

attributed to the latent geographic information embedded
in user check-ins. The e�ect of global attachment is even
stronger, as it enhances the accuracy of gravity-based mod-
els, while also reducing the validity of preferential attach-
ment models. These results confirm that the e�ect of ge-
ographic distance can not be neglected when social net-
works are studied and modeled: preferential attachment
mechanisms need to be modified into gravity-based mecha-
nisms, which are able to correctly balance the e�ects of node
attractiveness and the connection costs imposed by spa-
tial distance. Furthermore, mobility-based closure improves
model accuracy, o�ering additional information about the
geographic whereabouts of online users.

7.3 Implications
The importance of our findings goes beyond the definition

of accurate models of network evolution. Our results show
that the e�ect of geographic distance cannot be neglected
when online social networks are studied and modeled. In

reality, preferential attachment and triadic closure together
are already able to reproduce the global social properties
observed in real social networks, namely the degree distribu-
tion and the level of clustering. However, neglecting spatial
information about where users are located fails to account
for the e�ect of distance. In real systems users preferentially
connect over short distances, resulting in a considerable frac-
tion of short-range ties; instead, ignoring spatial constraints
would predict an unlikely majority of long-range connec-
tions. This goes against empirical evidence, both in o⇤ine
and online social systems.
Our findings support the idea that distance has a simple

e�ect on the creation of social ties: the probability of connec-
tion between two individuals decreases as a negative power of
the spatial distance between them. Yet, this e�ect must be
combined with a process based on“popularity”or“visibility”
that introduces heterogeneity across users, such as attach-
ment to the best connected nodes, in order to fully recreate
the self-reinforcing mechanisms that lead to the scale-free
degree distributions observed in social graphs.
Gravity mechanisms provide an elegant and insightful way

Friend distance and triangle length 
of gravity based models 

correlation with degree are 
matching the data
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•  People	
  who	
  have	
  checked	
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  given	
  city,	
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  their	
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  have	
  also	
  checked	
  
in	
  at	
  those	
  places.	
  

What do these place-friend 

networks look like?
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Distribu6on	
  of	
  community	
  sizes	
  

Black: social network 
communities.


Red: place-friend 
(local) communities.




Size of local 

communities is 
consistently smaller.




Intra-­‐community	
  links	
  
Proportion of communities having 
intra-community ties which are place 
friends.


More than 30% of  social 
communities have less than 10% 
placefriends.


More than 80% of local communities 
have more than 90% placefriends.


Community Detection on the 
social graph might not capture 
local communities.




Temporal	
  community	
  evolu6on	
  

Number of appearing links 
inside communities wrt to 

random appearance of 
links:


Local communities could 
be very good predictors.


Number of placefriends 
appearing: local 

communities are again 
good predictors.
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Power-law 
distribution of 
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popularity.
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>70%	
  of	
  triangles	
  
have	
  one	
  place	
  
shared	
  between	
  all	
  
three	
  people.	
  
	
  

Clustering around certain 
places


These places could act as 
foci for tie formation…
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Some kinds of places 
are much more 

likely to reinforce 
friendship than 

others.


•  What	
  is	
  the	
  role	
  of	
  place	
  categories?	
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