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A story
Roger Deakin: English writer and documentary-maker on water(ways). 

Waterways of  the UK.

“I stared dedicatedly at my shoes, embarrassed that my 
friend was failing to perform in front of  my academic 
peers. It was only later that I realized it wasn’t a failure to 
perform, but a refusal to conform. Cambridge seminars 
expect rigor and logic from their speakers: a braced 
subtlety of  exposition and explanation, tested proofs of  
cause and consequence. But water doesn’t do rigor in that 
sense, and neither did Roger, though his writing was often 
magnificently precise in its poetry... For Roger, water flowed 
fast and wildly through culture: it was protean, it was `slip-
shape’ … and so that was how he followed it, slipshod and 
shipshape at once, moving from a word here to an idea 
there, pursuing water’s influence, too fast for his notes or 
audience to keep up with, joining his … watery subjects by 
means of  an invisible network of  tunnels and drains.”

Danielle S. BassettMacfarlane, Landmarks



From Henri Poincare’s 1905 Science and Hypothesis:

“The aim of  science is not things themselves, as the dogmatists in their simplicity 
imagine, but the relations among things; outside these relations there is no reality 
knowable.”

From Dewey’s 1916 Democracy and Education (NY: Simon & Brown, 2011): 

”…[K]nowledge is a perception of  those connections of  an object which determine its 
applicability in a given situation. [...] Thus, we get at a new event indirectly instead of  
immediately - by invention, ingenuity, resourcefulness. An ideally perfect knowledge 
would represent such a network of  interconnections that any past experience would 
offer a point of  advantage from which to get at the problem presented in a new 
experience" (185).

Danielle S. Bassett

I. Knowledge is a network



II. Knowledge is a network learned by example

Danielle S. BassettErnst Haeckel, Radiolaria, microscopic sea organisms 

Linear algebra UK Waterways History

Is there an optimal way of walking through a network in lectures, books, papers, etc.?



Lectures, Papers, Books: Walks through networks

Danielle S. Bassett
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Random walk 

2-5-4-3-5-3-1-3-2-5- 
6-8-9-10- 
11-13-11- 

10-9-7-8-10- 
11-12-15-13-14-15-14-11-13 

Eulerian path  

12-14-13-11- 
10-9-8-6-9-7-8-10-7-6- 
5-4-3-2-5-3-1-2-4-1- 
15-13-12-15-14-11-12  

Hamiltonian path 

1-2-3-4-5- 
6-8-7-9-10- 

11-14-12-13-15 

Let’s suppose I have 15 ideas to translate 
in a class.

Those 15 ideas are related to one another 
in a heterogeneous manner, making a 
network like this ß

But I have to translate that information 
linearly, because time is one-dimensional 
and uni-directional.

How should I do it in a way that 
maximizes learning?



A “good walk” minimizes reconstruction error
and maximizes perception of the network’s topology

Danielle S. Bassett
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String of concepts traversed in 
time

Brain of the speaker 
or writer 

Brain of the listener or 
reader

m
ap

re
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ns
tru

ct
One word after another ….
One line after another …

Karuza et al. 2017 Sci Rep; Kahn et al. 2018 Nature Human Behavior



Danielle S. Bassett

14

13 12

11

15

9 8

710

6

51

42

3

14

13 12

11

15

9 8

710

6

51

42

3

Random walk 

2-5-4-3-5-3-1-3-2-5- 
6-8-9-10- 
11-13-11- 

10-9-7-8-10- 
11-12-15-13-14-15-14-11-13 

Eulerian path  

12-14-13-11- 
10-9-8-6-9-7-8-10-7-6- 
5-4-3-2-5-3-1-2-4-1- 
15-13-12-15-14-11-12  

Hamiltonian path 

1-2-3-4-5- 
6-8-7-9-10- 

11-14-12-13-15 

14

13 12

11

15

9 8

710

6

51

42

3

14

13 12

11

15

9 8

710

6

51

42

3

Random walk 

2-5-4-3-5-3-1-3-2-5- 
6-8-9-10- 
11-13-11- 

10-9-7-8-10- 
11-12-15-13-14-15-14-11-13 

Eulerian path  

12-14-13-11- 
10-9-8-6-9-7-8-10-7-6- 
5-4-3-2-5-3-1-2-4-1- 
15-13-12-15-14-11-12  

Hamiltonian path 

1-2-3-4-5- 
6-8-7-9-10- 

11-14-12-13-15 
m

ap

re
co

ns
tru

ct

Mind/Brain of the 
speaker or writer 

Mind/Brain of the 
PerceiverThe problem of inferring the patterns of 

pairwise dependencies from incoming 
streams of data allows us to:

Learn language
Segment visual events 
Parse tonal groupings
Parse spatial scenes
Infer social networks
Perceive distinct concepts



Can we measure perception of network topology
in a continuous stream of stimuli?
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Danielle S. Bassett

Let each specific stimuli (word, 
image, or movement) be a node 

in a graph.

Let each edge in the graph
indicate an allowable transition 

between nodes.

Construct a sequence of stimuli by a random walk on the graph. 

Karuza et al. 2016 Trends in Cognitive Science

time

…

At each stimuli, require the participant to perform a task, so that their time-to-react can be used as a 
measure of how well that edge in the graph was learned.

node 
edge



What do we know about this problem?

Danielle S. Bassett
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From work in the field of statistical learning and the study of artificial 
grammars, we know that humans are sensitive to transition probabilities. 

Then what would we predict about the graph below? 

0.75
A AB

0.25
C

Because every edge has a 
transition probability of 

0.25, human expectations 
should be equivalent 

across all transitions, and 
thus so should human 

reaction times.



Example experimental setup

Danielle S. Bassett

Stream of Stimuli Hand PlacementTransition graph

1. Motor: Kahn et al. 2018 Nature Human Behavior

2. Visual: Karuza et al. 2017 Scientific Reports 
3. Social: Tompson et al. 2018 Journal of Experimental Psychology; Learning 
Memory & Cognition

Karuza et al. 2016 Trends in Cognitive Science



Perception of higher-order network structure
in continuous streams of stimuli

Danielle S. BassettKahn et al. 2018 Nature Human Behavior 

Measure Reaction Time (RT) 
Per Transition

Striking slowing at cluster 
boundaries indicating graph 

learning



Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

Free energy principle: brain minimizes errors & computational complexity.  

Probability of recalling rather than        is               .

The error of a candidate probability distribution is 

Complexity of the error distribution is the entropy 

Total cost of the distribution is its free energy:  

Distribution that minimizes free energy principle is Boltzmann distribution

Creating expectations of transitions
We build 

expectations about a 
network structure with 

a counts matrix nij



From a poor memory arises biases in learning

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

current

No memory;
Minimizes mental resources 

Perfect memory;
Maximizes mental resources 

Poor memory



Measuring inverse temperature from RT data

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

N= 71; 243; 44



Measuring the memory distribution from n-back

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

N= 150



The effects of network violations

Danielle S. BassettLynn et al. 2018, arXiv:1805.12491

Humans are more surprised 
by stimuli from farther away 

on the ring than closer, 
indicating their implicit 

perception of the network 
topology. 

N= 99



Searching for design rules

Danielle S. Bassett

What is the optimally learnable graph? Does it have a topology 
that is common in language or nature? (Lynn et al. In Preparation) 
Or in well-written papers? (Chai et al. arXiv:1810.10534) Or in 
well-written textbooks? (Christianson et al. arXiv)

Do different humans prefer to learn information on different 
graph architectures? (Lynn et al. 2018, arXiv:1805.12491)

When we employ the processes of graph learning to grow our 
knowledge networks, do we ever form gaps in knowledge, and if so 
why? And what do we do with them? (Sizemore et al. 2018 Nature 
Human Behavior) Do different styles of gap-y learning relate to 
different styles of curiosity? (Lydon-Staley 2019 Psyarxiv)

Dr. Lizz Karuza,
Now Asst. Prof of 

Psychology at PSU

Ari Kahn, 
Graduate 
Student in 

Neuroscience

Chris Lynn,
Graduate 
Student in 
Physics

Karuza et al. 2016 Trends in Cognitive Science



Zurn & Bassett (2018) Pers Neurosci

Brain network processes supporting learning

Danielle S. Bassett

Does modularity in the brain might support the learning of graphs?
Might differences in modularity explain differences in the ability to learn?

“Mind thinks itself because it shares the nature of the object of thought; for it becomes an 
object of thought in coming into contact with and thinking its objects, so that mind and object 

of thought are the same.” Aristotle, Metaphysics, Book XII, 7, 1072 b 20



Theoretical & Computational Challenges

Bassett et al. (2013) Chaos Danielle S. Bassett

Challenge: Parsimoniously representing and 
describing complex connectivity patterns.

Ø Network models
Ø Bassett, Zurn, Gold (2018) Nat Rev Neuro

Challenge: Detecting modular structure in network 
models of brain connectivity.

Ø Modularity maximization (NP Hard)
Ø Meunier et al. (2009) NeuroImage

Challenge: Detecting evolving modules.
Ø Multilayer modularity maximization
Ø Mucha et al. (2010) Science



Module Autonomy in Sequence Learning

Bassett et al. (2015) Nature Neuroscience Danielle S. Bassett

The coherence between 
motor and visual modules 
decreased markedly with 

training, suggesting a growing 
autonomy.



General relevance of modularity for learning

Danielle S. BassettBassett & Mattar 2017 Trends in Cognitive Science

Hypothesis: Networks that can flexibly adapt are those with greater modularity.

Constrained modules; 
slow learner

Flexible modules; 
Fast learner

1. Flexible modules support swifter 
learning over 3 days; Bassett et 
al. 2011 PNAS

2. Swift learning is associated with 
flexible segregation of modules 
over 6 weeks; Bassett et al. 2015 
Nature Neuroscience

3. Segregation of modules at rest 
predicts learning 6 weeks in the 
future; Mattar et al. 2018 
NeuroImage



Module strengthening with dual n-back training

Finc et al. (2019) bioRxiv Danielle S. Bassett

Large-scale collections of 
brain regions (modules) 
change in their coherent 

activity with training, 
providing coarse-grained 

markers of function.



Flexible modularity supports learning (& executive function)

Danielle S. Bassett

Flexibility in network modules is predicts individual differences in:

Visuo-motor learning (Bassett et al. 2011 PNAS)
Cognitive flexibility (Braun et al. 2015 PNAS)
Working memory (Braun et al. 2015 PNAS)

(Shine et al. 2016 Neuron)
Learning rate (Gerraty et al., 2018, J Neurosci)
Future learning (Mattar et al. 2018 NeuroImage)

Planning & reasoning (Pedersen et al. 2018 PNAS)

Bassett & Mattar, Trends in Cognitive Science, 2017

Medication (Braun et al. 2016, PNAS)
Positive mood (Betzel et al. 2017 Sci Rep)
Amount of sleep (Pedersen et al. 2018 PNAS)



Searching for design rules

Danielle S. Bassett

Why do some types of learning induce changes in system strength 
and others induce changes in inter-system connectivity? Could we 
create a parameterization of task families that would allow us to 
manipulate these two phenotypes smoothly and continuously?

What induces network reconfiguration? Who is able to respond to 
training with greater network reconfiguration and why? What 
constraints determine what sorts of reconfiguration are easier or 
harder than others? How much energy does it take to induce a 
network reconfiguration?

Karuza et al. 2016 Trends in Cognitive Science

Urs Braun Mason Porter

Peter Mucha

Rick F. Betzel

Daphna Shohamy

Scott Grafton

Raphael Gerraty

Marcelo Mattar



Danielle S. Bassett

“Now if there was a becoming of every changeable thing, it follows 
that before the motion in question another change must have taken 
place in which that which is capable of being changed or of causing 

change had its becoming.” 

Aristotle, Physics VIII.I, 251a9



Danielle S. BassettKim et al. (2018) Nature Physics; Tang et al. (2018) Reviews of Modern Physics

What we have: A network of 
structural links empirically 

measured by neuroimaging.

What we seek: A theory for how a 
change in activity in one region affects 

activity in other regions.

Can build a theoretical model from data that predicts the changing, the becoming, and the 
causing of change? Or … how the brain’s activity can be altered by a perturbative signal?

Constraining Nature of Network Architecture



Danielle S. Bassett

• Neural processes can be approximated by linearized generalizations of nonlinear 
models of cortical circuit activity (Galan 2008; Honey et al. 2009).

• We consider a noise-free linear discrete-time and time-invariant network model:

State of brain 
regions over time

Weighted adjacency 
matrix

Control energy

Number of regions 
being controlled

Gu et al. (2015) Nature Communications; Tang et al. (2017) Nature Communications

Formalizing the Problem of Network Control



Danielle S. BassettGu et al. (2015) Nature Communications; Menara et al. (2017) IEEE TAC

How controllable the network is can be estimated using the smallest eigenvalues 
of the T-steps controllability Gramian:

Danielle S. Bassett

For brain networks, this value was small: 2.5 x 10^(-23)
• Practically extremely hard to control

Is the brain theoretically controllable?



Danielle S. Bassett

A couple control strategies:

1. Average Controllability: Steer to 
many easily reachable states

2. Modal Controllability: Steer to 
few difficult to reach states

Ø Which regions of the brain are most efficient or most difficult to control?

Pasqualetti et al. (2014) IEEE TCNS 

Types of driver nodes



Danielle S. BassettGu et al. (2015) Nature Communications, Betzel et al. (2016) Scientific Reports

Average: Trace(WK-1))

Modal: Let vj be the jth eigenvector of A with 
eigenvalue lj. Then if vij is small, then the jth
mode is poorly controllable from node i. Define 

as a scaled 
measure of controllability of all N modes from 
region i.)

Average and modal control



Network control as a model for cognitive control

Danielle S. Bassett

• Different brain regions have more or less 
average/modal controllability, indicating 
differential capacity to alter whole-brain dynamics            
(Gu et al. 2015 Nature Communications)

• The capacity of brain regions to exert control 
grows as children develop                  
(Tang et al. 2017 Nature Communications)

Tang et al. (2018) Reviews of Modern Physics

• Network controllability is correlated with 
impulsivity, a measure of executive function          
(Cornblath et al. 2018 NeuroImage)

Together, these results suggest that our theory is a useful marker of how the 
brain enacts control to change network function.

N= 872

• The energy required for control decreases with 
age, in concert with increasing executive function          
(Ciu et al. 2018 In Revision; preprint available on BioRxiv)



Khambhati et al. Network Neuroscience, 2019 Danielle S. Bassett

Modal controllability
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Preliminary work suggests that stimulation to modal controllers pushes 
the brain into better memory encoding states.

Extending to exogenous control (stimulation)



Danielle S. Bassett
Betzel et al. (2016) Scientific Reports; Gu et al. (2017) Neuroimage

What we want
• Finite time, Finite energy, 
• Multi-point control

• Initial state, Target state

Define a cost function penalizes energy 
and distance of x(t) from the target state.

Define model of network dynamics.

Stiso et al. (2019) In Press at Cell Reports; coming out Sept 3

Precise control of specific state transitions



Open questions

Ankit Khambhati

Eli Cornblath

Jason Z. Kim

Shi Gu

Rick F. Betzel

Jeni Stiso

Danielle S. BassettTang et al. (2018) Reviews of Modern Physics

What is it about certain network topologies that makes them easier 
or harder to control? (Kim et al. 2018 Nature Physics) Does the 
answer to this question help us to understand time scales of 
control, such as transient versus persistent control, which may be 
altered in certain patient groups? (Tang et al. 2019, Phys Rev E, In 
Revision)

How does control of brain state transitions relate to network 
reconfiguration exactly? How might brain states relate to neural 
representations, housing information about the world or our 
model of the world? What rules constrain the evolution of neural 
representations during learning? (Tang et al. (2019) Nature 
Neuroscience)

Fabio Pasqualetti



Summary & Future Directions
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