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The small world of the worm’s brain S

Caenorhabditis elegans

* Small-world
* High clustering or cliquishness of connections
between neighboring nodes
* Short path length or high efficiency of
communication between any pair of nodes

* Cost-efficient
* 40% maximum efficiency of information transfer
for only 4% maximum connection cost

Watts & Strogatz (1998) Nature; Latora & Marchiori (2001) Phys Rev Lett

Regular Small-world

Increasing randomness




Vertes et al (2011) YouTube
(search on neuro tweets)




From neuroimaging to brain graphs
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Gray Matter White Matter fMRI EEG/MES 1. Estimate an association matrix from
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I | — What are the nodes?
|

Parcellation

— What metric of connectivity?

2. Generate an adjacency matrix from the
association matrix
— What are the edges?
3. Measure topological properties of each
graph
4. Make comparisons between graphs

fMRI

Brain graphs are statistical models entailing assumptions and trade-offs which influence parameter values

Brain graph parameters make sense relativistically, not absolutely; comparison between graphs is not trivial

Bassett & Bullmore (2010) Curr Op Neurol; Bullmore & Bassett (2011) Annu Rev Clin Psychol




Many network properties are conserved across many scales and kinds
and species of brain graphs

Cellular functional network

Small worldness

e high clustering

e short path length or high efficiency

Cost-efficiency

¢ high efficiency of information transfer for relatively low
connection cost

Hub nodes
* fat-tailed degree distributions

Modularity

® nodes are more densely connected to other nodes in the
same module than to nodes in other modules

\ D
Whole-brain structural network ha e

Bullmore & Sporns (2009) Nat Rev Neurosci

Sporns et al (2007) PLoS ONE; Yu et al (2008) Cereb Cortex; Meunier et al (2010) Front Neurosci



Human brain graphs and other information processing networks are
hierarchically modular
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Nodes in the same module are often, but not always, anatomical as well as topological neighbours: so intra-modular
edges will be shorter distance than inter-modular edges

Brain graphs typically have modules within modules

Meunier et al (2010) Front Neurosci; Bassett et al (2010) PLoS Comp Biol; Chen et al (2008) Cereb Cortex
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Rentian and allometric scaling in brains
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Allometric scaling of mammalian brains is
approximated by Rentian scaling of
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What’s special and what’s universal about human brains
compared to other information networks?

Human Brain Network
Resting state FMRI
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Robustness

Vertes et al (2011) Front Sys Neurosci



Brain networks are economically wired but
do not strictly minimise wiring cost
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Expensive, long-range integrative connections may be “worth it”

for extra cognitive capacity

correlation coefficients of normalized path length of each individual node with IQ

* Greater efficiency (or shorter path length)
of human brain networks is correlated with
higher IQ

Van den Heuvel et al (2009) J Neurosci; Li et al (2009) PLoS Comp
Biol; Bassett et al (2010) PLos Comp Biol,;
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predicts integrative networks will be
required for conscious, effortful
processing

Dehaene et al (1998) Proc Nat! Acad Sci

Baars (1993) A cognitive theory of consciousness




Ventral—Dorsa

Cartoon interpretation of economical small-world architecture in
terms of cognitive processes
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Disordered brain development may involve an abnormal trade-off
between network cost and topology
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Topologically - less clustered, less modular and less Anatomically — less economically connected, a
hub-dominated: “subtle randomization” higher proportion of long distance edges

Lynall et al (2010) J Neurosci; Alexander-Bloch et al (2010) Frontiers
Sys Neurosci; Rubinov et al (2009) Hum Brain Mapp



Conclusions

About 200 years ago we began to understand the anatomical organization of brain
networks; in the last 10 years or so we have also begun to understand the topological
properties of brain networks

Graph theoretical analysis is a way of simplifying complex systems that is
generalizable to topological analysis of many scales and kinds of data and may
provide a useful mathematical framework for modeling the connectome

Hypothetically, brain networks “negotiate a trade-off” between minimization of
connection costs and maximization of behaviourally advantageous topological
properties, like efficiency

Recent data suggest that cost-efficiency trade-offs in brain networks
— are heritable
— are renegotiated dynamically in response to changing cognitive demands (msec)
— are relevant to normal and abnormal brain development (years)
— can be modulated by drugs affecting cognitive performance



