Link Communities

Yong-Yeol "YY" Ahn

SCHOOL OF INFORMATICS AND COMPUTING

INDIANA UNIVERSITY

Bloomington

Most populated countries

1,300,000,000+

1,200,000,000+

300,000,000+

Most populated countries

Billions of people

recording their social life

in **Bits**.

300 million users

300 million tweets per day

300 million people

publishing their life.

40421551	40421561	4	0421571	48421581	4042	21591	484	21601	48421	611 484	21621 4	0421631	48421	541 40	421651 48421	61 40421	571	48421681	4042
tgagcagacc	tatataagat	ggt	tatgaaga	ttcacacag	cggct (catgo	ctgtg	tcccage	cactt	t999a99c	tgaggcaa	agtggagca	cctgag	atcatga	gttcaagaccagc	tggccaaca	tggtg	aaacccca	tctcta
tgaacagacc	tatataagat	99	t tgaaga	ttcacacag	i gget (catgo	c g g	at cccage	cac	1999899C	gagtcaa	gtggagca	occtgag	atcatga	gtt ACCAGO	GGCCAACA	GG	ANACCCCA	TCTCTA
cagace	tatataagal	9g i	t aaga	tacacacag	996	calgo	c g g	tcccage	cactt	GEGLEEC	GLGGCN	GTEELEC	ACCT GAG	A CA GA	GTTC cage	: tggccaaca	-99 ¢	aaacccca	tetetar
GACC	A A AAGA	GG	TA GAAGA	CACACAG	GGC	C C	GG	CCCAG	CAC	GGGLGGC	GAGGCAV	GTGGAG	ACCTGAG	A CA GA	GTTCAAGACCAGC	GGACAACA	GG	AACCCCA	TCTCTA
IGAACAG	ATATAAGA	GG	ATGAAGA	CACACAG	GGC	CATEC	c tg	a toccage	cactt	999999	IG GG V	GTGG GC	ACCTGAG	CA GA	GTTCAAGACCA	GCCAACA	GG	MAACCCCA	TCTCTA
TGAACAGAC	CAGA	GG	TATGAAGA	CACACAG	GGC	CATEC	GG	I CCCAG	CACT	GEGLEGE	GAGGON	GGGG	ACCTG	AGA	GTTCAAGACCAGC	TGGCCAACA	GG (MUCCCCV	CTCTA
Lgaacagccc	tata aagal	99	tatgaaga	ttcacacag	i ggc i	catgo	c _g g	TCCCAG	CACIT	TGGGAGCC	GAGGEN	GTGGAGCA	CCTGA	A GA	GTTCAAGACCAGC	TGGCCAACA	GG	MARCCCCA	TATA
tgaacagacc	tatata gat	gg	tatgaaga	ttcacacag	agete	catgo	c g g	AG	CAC	IGGG GGC	IGAGGCA	GGGG GC	CGTGA	GA	GTTCAAGACCAGC	GGCCAACA	GG C	AMCCCCA	TC CTA
gacc	tatataagat	9g	tatgaaga	ttcacacag	gge		GA	CCCA (CAC	GGG GGC	IC GC V	GTGG GC	CCTGAG	CA GA	GTTCAAGA AGC	TEECCAACA	CG	WWCCCCV	TATCTA
IGAACAGACC	A A AA	GG	A GAAGA	CACACAG	GGC	ATGO	66		cactt	999a ge	g ggca	ig iggagea	cctgag	atcat	CAAGACCAGC	GGCCAACA	GG	AAACCCCCA	ICICIA
TG ACC	A A AAGA	GG	A GAAGA	CACACAG	GGC	A	GG	A CCCAG	CAC	GGG GGC	IGAGGCA	GIGGIGC	CIGAG	AT CACGA	G CAAGACCAGC	GCCCAACA	GG	AACCCCA	TCICIA
GAACAGACC	A A AAGA	GG	ACGAAGA	CACACAG	GGC	ALC:	GG		caca	gggagge	g gg	ig ggagea	icc gig	Itcat	AAGACCAGC	GGCCAACA	GG (AMACCCCA	TCTCTA
Igaacagacc	tatataaga		tatgaaga	Licacacag	99 C (catgo	c g g	a cccag	C	GGG GGC	GAGGCAV	GIGGIGC	ICC IGAG	CA GA	egc	tggccaaca	<u>99</u> 9	aaacccca	CCCLB
Lgaacagacc	a a aaga	99	aaga	L Cacacag	990	t tge	e g g	1 CCC3g	Cac	GGG GGC	IG GGCA	G GG GC	ACC GAG	A AA GA	GIC GC	GGCCAACA	GG (
GAACAGACC	A A AAGA	GG	A aga	cacacag	gge	g	99	CCC-3ge	Cac	AGGC	IG GG	G GG GC	ICC IGAG	CA GA	GTICANG C	GGCCAACA	GG	AAACCCCCA	ICICIA
rgaacagacc	a a aoga	99	18	CACACAG	GGC	A G	GG	TCCCAG	LACC	GGG GC	IG GGC	GIGGIGC	CCTGAG	A CA GA	GTICAAGAC	COMO	GG	AMCCCCA	ICICIA
GAACAGACC	A A AAGA	GG .	A	CAG	GGC	AIGC	GG		AC	GOG GOC	GAGGCAN	G GG GC	ICC IGAG	A CA G		CAACA	GG	AAACCCCCA	TCTCTA
GAACAGACC	A A AAGA	66	A GIVIG	CAG	GGC	G	6 6	ALC.	AC	CGGG GGC	G 66	6 66 66	ICC GAG	A CA G		AACA	66 6	AVALUCCO	ICICIA
GAACAGACC	A A AAGA	gg.	A GRAGA	CAG	GGC	GL	66	I CC	<u>cc</u> c	000-000	6.6600					ACA	GG		ICICIA)
CANCAGACC	TA C AAGA	Gu	A GAAGA		COUCT	GL	6 6	NIC CONCARD		000-000	G GGC	100.00			Contraction of the second	AL.A.	00 0		ICIAIA
GAACAGACC	A A ANGA	99	A GAAGA	Ě		G	6 6	CCCAG		000 000	IGACOCA.	100-00			G CAAGACCAGC	GOLON	00 0	AMALCOLLA	TERCIA
GAACAGACC		60	A GAAGA	CA.	CI	- IUC	6 6	CCCAG		000 000	10-00C	CTCC CC	C C		GILCANGACCAGO	GGCCANCA	60 0		COCTA
- average of	AGA		A GAAGA	CACACAG	COL 1	ATEC	6 6	CCAG		1000-000	IC CC	GTOC CTA	COLORIGA G	GA	GTTCAAGACCAGC	Gercauca	20 0		TC CLO
	ACA	8	A GAAGA	CACACAG	CCC		6 6		-	666 666	GLOG A	GTCC C	CCTGAG	CATCA CA	of the water conduction	CA CA	60 0	AACCCCC	C C A
	nen l	66	A GAAGA	CACACAG	GGC		G G	TCCC	č	TECE CE	GLOGELL	GIG or			anticasa accado	Inticanca	30.0	anaccecca	
		uų.	A GAAGA	CACACAG	GGGT	4	9.9	CCC20	ac	0000000				a ca yo		Innocratica	00	and concern	
			ATGAAGA	CACACAG	GGC	AG	66	TCCCAG	A C	GGG GGC	G GG V	GTGG GC	CCTGAG	CA GA	G	CA		AMACCCCA	TETETA
				- terrerierie			a	1 cccan	tatt	000.000	0 00		ICC			CA	GG (AMACCCCA	CICIC
								at cccage	CACTO	0008000	0.000		0.000			CA	GG (AMACCCCA	TCTCTA
									TC	TGAG GGC	IG GGC V	GTGG GC	CCTGAG	A CA GA	G		GIC	AMACCCCA	TCTCTA
										GGGATGC	TAGTON	GTAGEA	CCTGAG	TCATGA	GTIC		GTO	AMACCCCA	TETETA
										8000	deogca:	a agage	cctgag	tcatga	ottcaag		ate	Baacccca	teteta
											ggggca	a agage	ect gag	tcatga	speeperstig		gte	asaccoto	tetetar
											gaggene	gtggagen	cctgag	stcatga	gttcaagacca		(AAATCCCA	TCTCTA
											GAGGCA	GTGGAGCA	ACC GAG	A CA GA	GTTCAAGACCAG		(AAAACCCCA	TCTCTA
											AGGCAU	GTGGAGCA	CCTGAG	A CA GA	GTTCAAGACCAGC		(AMACCCCA	TCTCTA
											aggear	tttgaget	cctgag	stcatga	gttcaagaccagc		ç	aaacccca	tetetgr
											GCAV	GTGG GC	ACCTGAG	ATCA				AACCCCA	TCTCTA
											C/V	GEGGG	ACC GAG	A CA GA	GTCAAGACCAGC	IG		MATCCCA	TCTCTA
											Cat	a að de	ecc gag	atcatga	g caagaccagc	9		aacccca	tetetar
											A/	GTGGAGCA	ACCTGAG	A CA GA	GTTCAAGACCAGC	IGG		AACCCCA	TCTCTA
											1	GEGAGCA	ACCTIGAG	A CA GA	G CAAGACCAGC	GGC		ACCCCG	TTTCTA
												GIGCAGCA	ACC IGAG	A CA GA	GTICAAGACCAGC	TGGC		acccca	tetetar
												GIGGAGEA	COTGAG	A CA GA	GITCAAGACCAGC	TGGCC		CCCCC	ICICIA
												GGAGCA	CC GAG	A CA GA	GTICAAGACCAGC	TGGCCAA		0	TCICTA
												ggagea	ncc gag	atgatga	g caagaccagg	1ggccaa		0	ECICIA
												<u>aa.ac.</u>	ecc, dud	al cal ga	g coogaccogc	ggccaa		CG	TCICTA
												G G	ICCTGAG	A CA GA	GI ICAAGACCAGC	GGCCAAC		. 04	IC C A

INFORMATION

LIFE SOCIETY ECONOMY

BIG DATA

LIFE SOCIETY ECONOMY **BIG DATA** COMPLEX SYSTEMS

COMPLEX SYSTEMS

COMPLEX SYSTEMS

MANY parts,

INTERACTING with each other

in NON-TRIVIAL WAYS

NETWORKS

Nodes

Links (edges) between nodes

Y.-Y. Ahn, S. Ahnert, J. P. Bagrow, A.-L. Barabási, Sci. Rep. 2011

So what?

Pagerank = Random walk problem on a network

H1N1 Pandemic prediction

Real

Prediction

Reaction-diffusion system with transportation networks

Can we understand a complex system

without knowing the **structure** of it?

NETWORKS

Modular Structure

Global

Global

motifs degree

clustering

Saturday, May 19, 12

motifs degree

clustering

degree distribution

Global

Robustness

Saturday, May 19, 12

Global

motifs degree

clustering

degree distribution

Robustness

Network Communities

"a group of densely interconnected nodes"

"a group of densely interconnected nodes"

Modularity

M. Girvan and M. E. J. Newman, PNAS (2002)

Saturday, May 19, 12

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

Hundreds of community detection methods

Then, why bother?

Hierarchy & Overlap

Hierarchy

Hierarchy implies communities.

Hierarchical **Bandom Graph** model

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)

Hierarchical community structure

Hierarchy —— Communities

Saturday, May 19, 12

BUT,

G. Palla, I. Derényi, I. Farkas & T. Vicsek, Nature (2005)

Overlap is **pervasive**.

Overlap is pervasive.

Multiple Contexts Contexts e Contexts

Multiple Contexts

Saturday, May 19, 12

"Role theory"

http://www.youtube.com/watch?v=SxuYdzs4SS8

Hierarchical community structure

Another consequence

Simple local structure

Complex global structure

Complex global structure

What the xxxx is this?

Word association network: Network of "commonly associated English words"

G. Palla, I. Derényi, I. Farkas & T. Vicsek, Nature, 2005

Here is the **PROBLEM**.

Communities exist.

Hierarchical structure exists.

Hierarchical community structure

Hopeless?

Solution: Use LINKS

Solution: Use LINKS

Solution: Use Links

"a group of densely interconnected nodes"

Our solution: Use Links

"a group of densely interconnected naks"

Nodes: multiple membership

Links: unique membership

Hierarchy —— Communities

RECONCILIATION

So, How?

Similarity between links

Hierarchical Clustering

$$e_{ik} e_{jk}$$

$$i \neq i \neq jk$$

$$i \neq jk$$

$$S(e_{ac}, e_{bc})$$

$$S(e_{ac}, e_{bc})$$

$$S(e_{ik}, e_{jk}) = \frac{|n_{+}(i) \cap n_{+}(j)|}{|n_{+}(i) \cup n_{+}(j)|}$$
$$\frac{e_{ik}}{i} + \frac{e_{jk}}{k} = \frac{e_{jk}}{i} = S(e_{ac}, e_{bc})$$

$$S(e_{ac}, e_{bc}) = n_{+}(i) \equiv \{x \mid d(i, x) \leq 1\}$$

$$S(e_{ik}, e_{jk}) = \frac{|n_{+}(i) \cap n_{+}(j)|}{|n_{+}(i) \cup n_{+}(j)|} = \frac{4}{12}$$

Line graph transformation

$$D \equiv \frac{2}{M} \sum_{c} m_{c} \frac{m_{c} - (n_{c} - 1)}{(n_{c} - 2)(n_{c} - 1)}$$

$$D \equiv \frac{2}{M} \sum_{c} m_{c} \frac{m_{c} - (n_{c} - 1)}{(n_{c} - 2)(n_{c} - 1)}$$

objective function!

overlapping _____ well posed communities _____ optimization

Does it really work?

Metadata

Tags Customers Associate with This Product (<u>What's this?</u>) Click on a tag to find related items, discussions, and people.

race relations (188)mississippi (109)historical fiction (162)civil rights (108)deep south (154)debut novel (83)civil rights movement (119)integration (66)

Your tags: Add your first tag

Quantitative Evaluation Framework

				metadata	
network	description	Ν	$\langle k angle$	community	overlap
PPI (Y2H)	PPI network of <i>S. cerevisiae</i> obtained by yeast two-hybrid (Y2H) experiment [3]	1647	3.06	Set of each protein's known functions (GO terms) ^{<i>a</i>}	The number of GO terms
PPI (AP/MS)	Affinity purification mass spectrometry (AP/MS) experiment	1004	16.57	GO terms	GO terms
PPI (LC)	Literature curated (LC)	1213	4.21	GO terms	GO terms
PPI (all)	Union of Y2H, AP/MS, and LC PPI networks ^b	2729	8.92	GO terms	GO-terms
Metabolic	Metabolic network (metabolites connected by reactions) of <i>E. coli</i>	1042	16.81	Set of each metabolite's pathway annotations (KEGG) ^c	The number of KEGG pathway annotations
Phone	Social contacts between mobile phone users [15, 16, 17]	885989	6.34	Each user's most likely geographic location	Call activity (number of phone calls ^d)
Actor	Film actors that appear in the same movies during 2000–2009 [18]	67411	8.90	Set of plot keywords for all of the actor's films	Length of career (year of first role)
US Congress	Congressmen who co-sponsor bills during the 108th US Congress [19, 20]	390	38.95	Political ideology, from the common space score [21, 22]	Seniority (number of congresses served)
Philosopher	Philosophers and their philosophical influences, from the English Wikipedia ^e	1219	9.80	Set of (wikipedia) hyperlinks exiting in the philosopher's page	Number of wikipedia subject categories
Word Assoc.	English words that are often mentally associated [23]	5018	22.02	Set of each word's <i>senses</i> , as documented by WordNet ^f	Number of senses
Amazon.com	Products that users frequently buy together	18142	5.09 ^g	Set of each product's user tags (annotations)	Number of product categories

Examples

The first plant (genomic scale) interactome

Arabidopsis Interactome Mapping Consortium, Science, 2011

The first plant (genomic scale) interactome

Arabidopsis Interactome Mapping Consortium, Science, 2011

Saturday, May 19, 12

Hierarchical organization

~600k nodes ~3M edges

Saturday, May 19, 12

Summary

- Networks matter.
- Link (edge) perspective is useful.

Acknowledgements

James P. Bagrow

Albert-László Barabási

Sune Lehmann

T. S. Evans, R. Lambiotte

Line Graphs, Link Partitions and Overlapping Communities

xkcd.com

