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Finding and evaluating community structure in networks

M. E. J. Newman1, 2 and M. Girvan2, 3

1Department of Physics and Center for the Study of Complex Systems,
University of Michigan, Ann Arbor, MI 48109–1120

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
3Department of Physics, Cornell University, Ithaca, NY 14853–2501

We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-
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this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
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we wish to distribute over a number g of computer proces-
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with all others, and the pattern of required communica-
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a wide variety of heuristic algorithms have been devel-
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the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1: Overlapping communities lead to dense networks and prevent the discovery of a sin-
gle node hierarchy. (A) Locally, structure in social networks is simple: an individual node sees
the communities it belongs to. (B) Complex global structure emerges when every node is in the
situation displayed in (A). (C) Strong overlap hinders the discovery of hierarchical organization
since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See SOM for additional examples.
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM, 87501, USA

3Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA

Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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functions denoted by P(m), P(sov), P(d com) and P(s com). For the
overlap size, for example, P(sov) means the proportion of those
overlaps that are larger than sov. Further relevant statistical features
will be introduced later.
The basic observation onwhich our community definition relies is

that a typical community consists of several complete (fully con-
nected) subgraphs that tend to share many of their nodes. Thus, we
define a community, or more precisely a k-clique community, as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques (where
adjacency means sharing k 2 1 nodes)21–23. This definition seeks to
represent the fact that it is an essential feature of a community that its
members can be reached through well-connected subsets of nodes.
There are other parts of the whole network that are not reachable
from a particular k-clique, but they potentially contain further
k-clique communities. In turn, a single node can belong to several
communities. All these can be explored systematically and can result
in many overlapping communities (illustrated in Fig. 1c). In most
cases, relaxing this definition (for example, by allowing incomplete
k-cliques) is practically equivalent to decreasing k. For finding
meaningful communities, the way in which they are identified is
expected to satisfy several basic requirements: it cannot be too
restrictive, it should be based on the density of links, it is required
to be local, it should not yield any cut-node or cut-link (whose
removal would disjoin the community) and, of course, it should
allow overlaps. We employ the community definition specified
above, because none of the others in the literature satisfy all these
requirements simultaneously21,24.

Although the numerical determination of the full set of k-clique
communities is a polynomial problem, we use an algorithm (which
can be downloaded from http://angel.elte.hu/clustering/) that is
exponential, because it is significantly more efficient for the graphs
corresponding to real data. This method is based on first locating all
cliques (maximal complete subgraphs) of the network and then
identifying the communities by carrying out a standard component
analysis of the clique–clique overlap matrix21. More details about the
method and its speed are given in Supplementary Information.
We use our method for binary networks (that is, with undirected

and unweighted links). An arbitrary network can always be trans-
formed into a binary one by ignoring any directionality in the links
and keeping only those that are stronger than a threshold weight w*.
Changing the threshold is like changing the resolution (as in a
microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
increasing kmakes the communities smaller and more disintegrated
but also at the same time more cohesive.
When we are interested in the community structure around a

particular node, it is advisable to scan through some ranges of k and
w* and monitor how its communities change. As an illustration, in
Fig. 2 we show diagrams of the communities of three selected nodes
of three large networks: the social network of scientific collabo-
rators25 (Fig. 2a), the network of word associations26 related to
cognitive sciences (Fig. 2b) and the molecular-biological network
of protein–protein interactions27 (Fig. 2c). These pictures can serve as
tests or validations of the efficiency of our algorithm. In particular,

Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
‘bright’ in the South Florida Free Association norms list (for w* ¼ 0.025)
represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.
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Figure S4: Overlapping links. In the link community framework, a link may be assigned to only one community. By deriving
node communities, however, the problem of effectively discovering multiple relationships between nodes is effectively solved.
Two nodes can belong to many communities together regardless of the membership of the link between them. Left: illustration
of the situation. Right: real examples from word association network. In the upper example, Blend and blender belong to both
‘fruit juice’ community and ‘mix’ community. In the bottom example, the link between appear and reappear does not even
belong to any of the other communities, but they belong to several communities together.

link can simultaneously belong to multiple communities even though the link itself belongs to only one
community. Here, we let the examples in Fig. S4 provide further illumination of this point.

The simplistic cases in Fig. S4, however, do not address the complex community structure that arises
in real life, where the multiple relationships may include more groups of many nodes and more than one
link. Consider a high school with classes of about 30 students. These classes form clusters/communities
and are likely to be located by the link community method. Now, students from these classes typically
form a number of further communities: Some go to the same class to learn a foreign language, others
play on the school’s basketball team, etc. Thus, there will be further overlapping communities in such
a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
the link communities do, in fact, extract these subtle relationships.

It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
However, if the school’s social network is weighted based on the time students spend together, or if
basketball players are slightly more likely to become friends with other basketball players than with
students not on the team, or if the team has slightly different external connectivity, these will be identified
(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
nities? To answer this, we study the network of communities, where each node is now a community
in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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and are likely to be located by the link community method. Now, students from these classes typically
form a number of further communities: Some go to the same class to learn a foreign language, others
play on the school’s basketball team, etc. Thus, there will be further overlapping communities in such
a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
the link communities do, in fact, extract these subtle relationships.

It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
However, if the school’s social network is weighted based on the time students spend together, or if
basketball players are slightly more likely to become friends with other basketball players than with
students not on the team, or if the team has slightly different external connectivity, these will be identified
(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
nities? To answer this, we study the network of communities, where each node is now a community
in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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Figure S16: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S17: More link community examples in the word association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of the word pair SUNRISE-
SUNSET. The translated node communities are listed.
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Hierarchical structure and the prediction of missing links in networks∗
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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S(eac, ebc) =
1
3

S(eac, ebc) = 1

Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇤ n+(j)| = 12 and |n+(i) ⌅ n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

structure can become radically different.) Thus, we neglect the neighbors of the keystone. We

first define the inclusive neighbors of a node i as:

n+(i) � {x | d(i, x) ⇥ 1} (S1)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⌅ n+(j)|
|n+(i) ⇤ n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and

3

Saturday, May 19, 12



eik ejk

i jk
A B

a b

c

a b

c

C

S(eac, ebc) =
1
3

S(eac, ebc) = 1

Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇤ n+(j)| = 12 and |n+(i) ⌅ n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

structure can become radically different.) Thus, we neglect the neighbors of the keystone. We

first define the inclusive neighbors of a node i as:

n+(i) � {x | d(i, x) ⇥ 1} (S1)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⌅ n+(j)|
|n+(i) ⇤ n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables
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Metadata

Figure R11: Example of the network and available metadata for the Amazon.com product co-purchases network. Here we show a
particular book (upper left), some of the books it is often bought with (lower left), the set of subjects it is classified into by Amazon.com
(upper right), and the set of popular “tags” Amazon.com users have chosen to describe or annotate the book’s content (lower right).
We can use shared tags to quantify how similar pairs of books are, and the more subjects a book has, the more communities it is
expected to belong to. Other combinations of metadata are certainly possible. Other networks used here have analogous metadata.

R3.3 Measures

There are some subtle aspects to consider when comparing disparate community algorithms. Some methods
find excellent communities (high quality) but only for a very small fraction of the network (low coverage). Oth-
ers find medium-quality communities but classify the majority of the network. Some methods find overlapping
memberships, others do not. Since it is difficult and unfair to compare all methods along any one of these di-
rections, we have introduced a simple composite performance measure to fairly account for these differences
while also allowing a researcher to focus on the individual aspects.

We study four distinct aspects of the quality and comprehensiveness of the communities found—the quality
measures are based on metadata and the measures of comprehensiveness focus on the amount of information
extracted from the network.

Community Quality. Most of the networks studied here possess metadata that consist of small sets of an-
notations or tags associated with each node. For example, in the Amazon.com network, each book is
categorized into several subjects (see Fig. R11); each actor’s career in the actor collaboration network
can be described by a set of plot keywords; each protein in the protein-protein interaction networks is
given a set of GO terms, which describe the biological process that the protein participates in. Assuming
that these metadata form a description of the node, beyond the network itself, we can reasonably state that
“similar” nodes share more metadata than dissimilar nodes. To quantify this, we compute enrichment of
node pair similarity:

Enrichment =

D
µ(i, j)

E
all i, j within

same communityD
µ(i, j)

E

all pairs i, j

, (R1)

where µ(i, j) is some metadata similarity between nodes i and j. In other words, enrichment is the average

R-19
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high overlap

low overlap

Community quality

Subjects
 HIV / AIDS

 Medical
 Nonfiction / General
 Infectious Diseases

Subjects
 Africa - General
 Africa
 History

Amazon.com

Subjects
 HIV / AIDS
 Medical
 Africa

Acetyl-CoA
 1. Glycolysis / Gluconeogenesis
 2. TCA cycle 
 3. Fatty acid biosynthesis
 4. ...

Many pathway 
Memberships

IDP (Inosine diphosphate)
 1. Purine metaboilsm

Few pathway 
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Metabolic network

Figure R12: The elements of composite performance. (top left) Community quality measures the similarity between nodes within each
community compared to a null model, based on metadata. (bottom left): Overlap quality compares the amount of overlap found for
each node and compares that to measures of real-wold overlap, based on metadata. (top right) Community coverage is simply the
fraction of nodes are categorized by the algorithm. (bottom right) Overlap coverage calculates the average number of memberships
per node.

R3.4 Algorithms tested

There are simply too many methods in the literature to test every one exhaustively. Besides the link commu-
nities that we introduce, we focus on four representative community algorithms that are very popular and well
accepted.

Link Clustering The algorithm we have introduced. A simple link-link similarity measure is used, followed by
single-linkage hierarchical clustering, yielding a complex “link dendrogram.” To focus on communities,
since we do not yet possess tools to fully study the complex link dendrogram, we cut the dendrogram at
the level with maximum partition density.

Node Clustering This control algorithm is introduced to directly illustrate the benefit of considering links
instead of nodes, while fixing all other possible algorithm details. A nearly-identical node-node similarity
measure is used, followed by the same single-linkage hierarchical clustering. The dendrogram is cut at
the level with maximum modularity. This algorithm is quite related to the early work of Ravasz et al. [6]
It is meant to answer the question “How much better is it to partition links instead of nodes?” without

R-21
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Table R1: A brief description of the networks used in the paper. Shown are the number of nodes N, the average degree �k⇥, and brief
descriptions of the metadata available to study node similarity (community) are expected node overlap. Full information about each
network’s curation and construction methods is given in the SI. The networks in this table are quite different, with very different origins
and topologies (for example, the network range from sparse (average degree 6.34) to dense (average degree 38.95)).

metadata

network description N �k⇥ community overlap

PPI (Y2H) PPI network of S. cerevisiae
obtained by yeast two-hybrid
(Y2H) experiment [3]

1647 3.06 Set of each protein’s
known functions (GO
terms)a

The number of GO
terms

PPI (AP/MS) Affinity purification mass
spectrometry (AP/MS)
experiment

1004 16.57 GO terms GO terms

PPI (LC) Literature curated (LC) 1213 4.21 GO terms GO terms
PPI (all) Union of Y2H, AP/MS, and LC

PPI networksb
2729 8.92 GO terms GO-terms

Metabolic Metabolic network (metabolites
connected by reactions) of E.
coli

1042 16.81 Set of each
metabolite’s pathway
annotations (KEGG)c

The number of
KEGG pathway
annotations

Phone Social contacts between mobile
phone users [15, 16, 17]

885989 6.34 Each user’s most likely
geographic location

Call activity
(number of phone
callsd)

Actor Film actors that appear in the
same movies during
2000–2009 [18]

67411 8.90 Set of plot keywords
for all of the actor’s
films

Length of career
(year of first role)

US Congress Congressmen who co-sponsor
bills during the 108th US
Congress [19, 20]

390 38.95 Political ideology,
from the common
space score [21, 22]

Seniority (number
of congresses
served)

Philosopher Philosophers and their
philosophical influences, from
the English Wikipediae

1219 9.80 Set of (wikipedia)
hyperlinks exiting in
the philosopher’s page

Number of
wikipedia subject
categories

Word Assoc. English words that are often
mentally associated [23]

5018 22.02 Set of each word’s
senses, as documented
by WordNet f

Number of senses

Amazon.com Products that users frequently
buy together

18142 5.09g Set of each product’s
user tags (annotations)

Number of product
categories

aGO terms are “structured, controlled vocabularies (ontologies) that describe gene products in terms of their as-
sociated biological processes, cellular components and molecular functions in a species-independent manner.” See
http://wiki.geneontology.org/index.php/GO_FAQ

bWe also analyze each PPI separately since each network has distinct topology.
cKEGG database provide pathway annotations for metabolites. See http://www.genome.jp/kegg/
dThere is a small correlation between the total number of calls and the degree in the network, r2 = 0.27. Any overlap

metadata should exhibit some correlation with node degree.
eInfluences are treated independently from the global hyperlink structure and are easy to extract for philosophers.
fSee http://wordnet.princeton.edu/wordnet/man/wngloss.7WN.html
gAmazon.com’s XML Service only returns the five most co-purchased products, though considering the network

as undirected will boost some node degrees. This artificial constraint makes the network to have very narrow degree
distribution, and serves as a unique test set.
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Figure S12: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S13: More link community examples in the word-association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of a word pair SUNRISE-
SUNSET The translated node communities are listed.
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Figure S16: Another example of overlapping community structure. (A) The subnetwork sur-
rounding protein YBL041W (snowball sampled out to three steps). (B) The communities sur-
rounding YBL041W. Only GO terms with p-value smaller than 10�10 are displayed (with colors
corresponding to their communities). These communities correspond to the core and the regu-
latory particles of the proteasome complex and a community connecting the two.
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Figure 4: Statistics for the E. coli metabolic and mobile phone networks. (A) Coverage, the
fraction of nodes induced by communities of 3 or more nodes (see text); the ratio of the number
of edges in the two largest communities; and the partition density D, respectively. The denser
metabolic network requires a higher threshold to separate compared to the mobile phone data.
In both networks, peaks in D correspond to s2/s1 nearing 1/2, a possible transition point (28).
(B) The distribution of community sizes and node memberships (insets). Currency metabo-
lites, such as water, belong to many communities, as expected. See SOM for protein-protein
interaction networks.
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Figure 4: Statistics for the E. coli metabolic and mobile phone networks. (A) Coverage, the
fraction of nodes induced by communities of 3 or more nodes (see text); the ratio of the number
of edges in the two largest communities; and the partition density D, respectively. The denser
metabolic network requires a higher threshold to separate compared to the mobile phone data.
In both networks, peaks in D correspond to s2/s1 nearing 1/2, a possible transition point (28).
(B) The distribution of community sizes and node memberships (insets). Currency metabo-
lites, such as water, belong to many communities, as expected. See SOM for protein-protein
interaction networks.
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Figure 2: Spatial and nested structures found at many levels in a mobile phone network. (A)
Total population density. (B) The three largest communities at the optimum threshold cluster
around a single city. (C) At a lower threshold, the largest communities become spatially ex-
tended, but still show correlation. (D) High thresholds yield smaller, intra-city communities.
(E) The largest community in (C) with largest sub-community highlighted. (F) The highlighted
sub-community in (E), along with the link dendrogram and Partition Density as a function of
clustering threshold.
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Summary
• Networks matter.

• Link (edge) perspective is useful.

LETTERS

Link communities reveal multiscale complexity in

networks
Yong-Yeol Ahn

1,2*, James P. Bagrow
1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems

of interacting objects, unifying the study of diverse phenomena

including biological organisms and human society1–3. One crucial

step when studying the structure and dynamics of networks is to

identify communities4,5: groups of related nodes that correspond

to functional subunits such as protein complexes6,7 or social

spheres8–1
0. Communities in networks often overlap9,10 such that

nodes simultaneously belong to several groups.
Meanwhile, many

networks are known to possess hierarchical organization, wh
ere

communities are recursively grouped into a hierarchical struc-

ture11–13. However, the fact that many real networks have com-

munities with pervasive overlap, where each and every node

belongs to more than one group, has the consequen
ce that a global

hierarchy of nodes cannot capture the
relationships between over-

lapping groups. Here we reinvent communities as groups of links

rather than nodes and show that this unorthodox approach suc-

cessfully reconciles the antagonistic o
rganizing principles of over-

lapping communities and hierarchy. In contrast to the existing

literature, which has entirely focused on grouping nodes, link

communities naturally incorporate overlap while revealing hier-

archical organization. We find relevant link communities in many

networks, including major biological networks such as protein–

protein interaction
6,7,14 and metabolic networks

11,15,16, and show

that a large social network
10,17,18 contains hierarchically organized

community structures spanning inner-city t
o regional scales while

maintaining pervasive overlap. Our results imply that link com-

munities are fundamental building blocks that reveal over
lap and

hierarchical organization in networks to be two aspects of the

same phenomenon.

Although no common definition has been agreed upon, it i
s widely

accepted that a community should have more internal than external

connections
19–24. Counterintuitively, highly overlapping

communities

can have many more external than internal connections (Fig. 1a, b).

Because pervasive overlap breaks even th
is fundamental assumption, a

new approach is needed.

The discovery of hierarchy and community organization has always

been considered a problem of determining the correct membership

(ormemberships) of each node. Notice that, wh
ereas nodes belong to

multiple groups (individuals have families, co-workers and friends;

Fig. 1c), links often exist for one dominant reason (two people are in

the same family, work together or have common interests). Instead of

assuming that a community is a set of nodes withmany links between

them,we consider a community to be a set of closely interrelated lin
ks.

Placing each link in a single context allo
ws us to reveal hierarchical

and overlapping relationships simultaneously. We use hierarchical

clustering with a similarity between links to build a dendrogram

where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-

drogram, links occupy unique positions whereas nodes naturally

occupy multiple positions, owing to their links. W
e extract link com-

munities at multiple levels by cutting this dendrogram at various

thresholds. Each node inherits all memberships of its links and can

thus belong to multiple, overlapping communities. Even though we

assign only a single membership per link, link communities can also

capture multiple relationships between nodes, because multiple

nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, b
ut to

obtain themost relevant communities it is necessary to determine the

best level at which to cut the tree. For this purpose, we intro
duce a

natural objective function, the partition density, D, based on link

density inside communities; unlike modularity2
0, D does not suffer

from a resolution limit25 (Methods). ComputingD at each level of the

link dendrogram allows us to pick the best level to cut (although

meaningful structure exists above and below that threshold). It is

also possible to optimize D directly. We can now formulate overlap-

ping community discovery as a well-posed optimization problem,

accounting for overlap at every node without penalizing that
nodes

participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around

the word ‘Newton’ in a network of commonly associated English

words. (See Supplementary Information, section 6, for details on

networks used throughout the text.) The ‘clever, wit’
community is

correctly identified inside the ‘smart/intellect’ community. The

words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,

‘weight’ and ‘apple’ communities, illustrating that link communities

capture multiple relationships between nodes. See Supplementary

Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,

real-world evidence that a link-based approach is superior to exist-

ing, node-based approaches. Using data-driven performance mea-

sures, we analyse link communities found at the maximum partition

density in real-world networks, compared with node communities

found by three widely used and successful methods: clique percola-

tion9, greedy modularity optimization26 and Infomap21. Clique per-

colation is the most prominent overlapping community algorithm,

greedy modularity optimization is the most popular modularity-

based20 technique and Infomap is often considered the most accurate

method available27.

We compiled a test group of 11 networks covering many domains

of active research and representing the wide body of available data

(Supplementary Table 2). These networks vary
from small to large,

from sparse to dense, and from those withmodular structure to those

with highly overlapping structure. We highlight a few data sets of

particular scientific importance: The mobile phone network is the

*These authors contributed equally to this work.
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Spouses Alice and Bob also work togethera b

The Alice-Bob link was placed in family but both 
home and work relationships are identified

Word Association examples

Figure R3: Can multiple relationships between nodes be found by link communities that assume one membership per link? Yes,
because the nodes themselves “inherit” multiple memberships from their links. Two nodes can belong to many communities together
regardless of the membership of the link between them. (a) A cartoon example. Alice and Bob are found to be related by sharing both
their family and their work. (b) Some real examples found within the full word association network. In the upper example, BLEND and
BLENDER belong to both the ‘fruit juice’ community and the ‘mix’ community. In the bottom example, the link between APPEAR and
REAPPEAR does not even belong to any of the other communities, but the words still belong to several communities together. See also
Fig. R5.
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Figure R4: Membership and overlap statistics for link communities in sparse (Amazon.com, actor) and dense (word association,
metabolic) networks. Shown are the distributions for overlap size sov (top) and membership number m (bottom), as introduced by
Palla et al. [8]. Link communities were found at the maximum partition density D. We find that link communities extract highly
overlapping communities and a higher average number of overlapping memberships for the denser networks than the sparse ones. The
distribution of sov corresponds to the distribution of weights in the community network. Statistics for clique percolation are shown for
comparison (clique size k was chosen from existing literature precedents or else to maximize composite performance).

It’s true that if a group is completely subsumed inside another group, and there are no structural differences
distinguishing this group, such as different connectivity patterns, then link communities will not find the internal
group. No method will find it, because it’s completely invisible (Fig. R5a). However, if the school’s social
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Figure 5: Some small, illustrative examples of the subtle structural changes that link communities detect, using the bipartite
social model of [21] with p = 0.8, followed by our link communities algorithm. In (a) there are no distinguishing structural
features to separate the “subsumed” basketball team from the language class. Detecting the team is impossible for all methods.
In (b) however, a single change allows for 100% complete detection. The entire basketball team is successfully found, even
though only the coach-team links are separated. It doesn’t take much to achieve the proper node communities. (c) A more
extreme example. Class and team detection are again 100% accurate. Very subtle patterns are detectable (see, e.g., the word
association communities in main text Fig. 1f and Figs. 3, 7, 14, 15).
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