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Modelling Networks

We are interested in modelling networks.

Real Networks Are Complex

Taken from Barabasi & Oltvai, 2004. A protein-protein interaction

network of budding yeast.
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Biological networks: protein-protein interaction networks

Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

• predict missing links,

• infer latent properties or classes of the objects,

• generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



What is a network?

• A set V of entities (nodes, vertices) and

• A set Y of pairwise relations (links, edges) between the entitiesA Network
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Nodes (vertices) and edges (links) comprise the network.
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We can represent this as a graph with a binary adjacency matrix Y where element
yij = 1 represents a link between nodes vi and vj

We’ll focus on undirected graphs (i.e. networks of symmetric relations) but much of
what is discussed extends to more general graphs.



What is a model?

Descriptive statistics: identify interesting properties of a network (e.g. degree
distribution)

Predictive or generative model: A model that could generate random networks
and predict missing links, etc.



Erdös-Rényi Model
A Network
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Nodes (vertices) and edges (links) comprise the network.
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A very simple model that assumes each link is independent, and present with
probability π ∈ [0, 1]

yij ∼ Bern(π)

This model is easy to analyse but does not have any interesting structure or make
any nontrivial predictions. The only thing one can learn from such a model is the
average density of the network.



Latent Class Models

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.
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The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models

Latent Class Models
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Latent class models cluster the nodes. Each node is a member of

one cluster.
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This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Latent Class Models
Stochastic Block Model (Nowicki and Snijders, 2001)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.
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Each node vi has a hidden class from a set of K possible classes: ci ∈ {1, . . . ,K}

For all i:
ci ∼ Discrete(p1, . . . pK)

The probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

The parameters of the model are the K×1 class proportion vector p = (p1, . . . , pK)
and the K ×K link probabillity matrix ρ where ρk` ∈ [0, 1].



Latent Class Models
Latent Class Models: A Nonparametric Extension
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Consider another data point
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If we observe a new node, which class do we assign it to?



Nonparametric Latent Class Models
Latent Class Models: A Nonparametric Extension
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... or we may create a new class for it.
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The new node could belong to one of the previously observed classes, but might
also belong to an as yet unobserved class.

This motivates nonparametric models, where the number of observed classes can
grow with the number of nodes.1

1Nonparametric models are sometimes called infinite models since they allow infinitely many classes, features,
parameters, etc.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.
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Each node vi has a hidden class ci ∈ {1, . . . ,∞}

For all i: ci|c1, . . . , ci−1 ∼ CRP(α) 2

As before, probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

Note that ρ is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out. Inference done via MCMC. Fairly straightforward to implement.

2CRP, or Chinese Restaurant Process, is an exchangeable distribution on partitions of the integers which is used to
define clustering models with an unbounded number of clusters.



Latent Feature ModelsLatent Feature Models
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latent feature models associate each vertex with K latent features
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• Each node posses some number of latent features.

• Alternatively we can think of this model as capturing overlapping clusters or
communities

• The link probability depends on the latent features of the two nodes.

• The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Latent Feature Models
Nonparametric Latent Feature Relational Model (Miller et al 2010)

Latent Feature Models

1

2

3
4

5

6

78

9

latent feature models associate each vertex with K latent features
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Let zik = 1 denote whether node i has feature k

The latent binary matrix Z is drawn from an IBP3 distribution: Z|α ∼ IBP(α)

The elements of the parameter matrix W are drawn iid from: wk` ∼ N(0, σ2)

The link probability is:

P (yij = 1|W,Z) = σ


∑

k,`

zik zj` wk`




where σ(·) is the logistic (sigmoid) function.

3An IBP, or Indian Buffet Process, is an exchangeable distribution over infinite feature allocations—generalising
clustering models to allow overlapping communities.



Infinite Latent Attribute model for network data
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ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

• Each object has some number of latent attributes

• Each attribute can have some number of discrete values

• Probability of a link between object i and j depends on the attributes of i and j:

P (yij = 1|zi, zj,C,W) = σ
(∑

m

zimzjmw
(m)
cmi c

m
j

+ s
)

• Potentially unbounded number of attributes, and values per attribute4

• Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, ICML 2012)
4An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data

i
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ci  = 3 0 0 1 0 0 0 4 0 0 0 1 0 0 … 

cj  = 2 1 0 2 9 0 0 1 0 8 0 0 0 0 … 

Example: a student friendship network

• Each student might be involved in some activities or have some features:
person i has attributes (College, sport, politics)

person j has attributes (College, politics, religion, music)

• Each attribute has some values:
person i = (College=Trinity, sport=squash, politics=LibDem)

person j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

• Prob. of link between person i and j depends on their attributes and values.

• The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results

Test error rates (missing link prediction) on NIPS coauthorship, and gene interaction
prediction benchmark datasets.

IRM LFIRM ILA
NIPS 0.0440± 0.0014 0.0228± 0.0041 0.0106± 0.0007
Genes 0.3608± 0.0031 0.2661± 0.0086 0.0735± 0.0047

IRM: (Kemp and Tenenbaum 2006)
LFIRM: (Miller, Griffiths and Jordan 2010)



Exchangeable Sequences

Exchangeable sequence:
A sequence is exchangeable if its joint distribution is invariant under arbitrary
permutation of the indices:

(X1, X2, ...)
d
= (Xπ(1), Xπ(2), ...) ∀π ∈ S∞.

de Finetti’s Theorem:
(Xi)i∈N is exchangeable if and only if there exists a random probability measure Θ
on X such that X1, X2, . . . |Θ ∼ iid Θ

Interpretation:
Any probabilistic model of data which assumes that the order of the data does not
matter, can be expressed as a Bayesian mixture of iid models. Note that Θ may in
general need to be infinite dimensional (i.e. nonparameteric).



Exchangeable Arrays

Exchangeable arrays: An array X = (Xij)i,j∈N is called an exchangeable array if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞.
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Exchangeable Arrays

Exchangeable arrays: An array X = (Xij)i,j∈N is called an exchangeable array if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞.

Aldous-Hoover Theorem:
A random matrix (Xij) is exchangeable if and only if there is a random (measurable)

function F : [0, 1]3 → X such that (Xij)
d
= (F (Ui, Uj, Uij)) for every collection

(Ui)i∈N and (Uij)i≤j∈N of i.i.d. Uniform[0, 1] random variables, where Uji = Uij for
j < i ∈ N.
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Θ

Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns
(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the
observations.



Random Function Model

We develop a nonparametric probabilistic model for arrays and graphs that makes
explicit the Aldous Hoover representation:
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Θ ∼ GP(0, κ) (1)

U1, U2, . . .
iid∼ Uniform[0, 1] (2)

Wij = Θ(Ui, Uj) (3)

Xij ∼ P [·|Wij] (4)

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)



Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.



Random Function Model: Results



Relational Data

Networks are special case of relational data.
More generally we should think about modelling databases containing multiple
types of entitites, multiple relations, and features of entities (covariates).
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Do the Aldous-Hoover class of representations extend to such relational data?



Extension: Relational Data wth Covariate Features

Suppose that in addition to a social network (Xij) we have side information in the
form of covariates for the users (Ci).

Corollary

Let (Xij)i,j∈N and (Ci)i∈N be random variables in X and X ′ respectively. Then the
following are equivalent:

i. (Xij), (Ci)
d
= (Xp(i)p(j)), (Cp(i)) for every p ∈ S∞.

ii. There are random measurable functions F : [0, 1]3 → X and G : [0, 1] → X ′

such that
(Xij), (Ci)

d
= (F(Ui,Uj,Uij)), (G(Ui)),

where (Ui)i∈N and (Uij)i≤j∈N are i.i.d. Uniform[0, 1] random variables and
Uji = Uij for j < i ∈ N.

(w/ James Lloyd, Dan Roy, Peter Orbanz)



What about Multiple Relations?
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Extension: Two Arrays

Consider rating data (Xij) with users i and items j, and a social network (Sik) over
users i, k.

Corollary
The following are equivalent

i. (Xij), (Sik)
d
= (Xp(i)p′(j)), (Sp(i)p(k)) for every p, p′ ∈ S∞.

ii. There exist random functions F,G such that

(Xij), (Sik)
d
= (F(Ui,Vj,Wij)), (G(Ui,Uk,Uik))

where (Ui)i∈N, (Vj)j∈N, (Wij)i,j∈N and (Uik)i≤k∈N are i.i.d. Uniform[0, 1]
random variables, and Uki = Uik for k < i ∈ N.

In fact we have extensions to arbitrary databases with R relations and O objects.



Exchangeable Databases: Summary

To model an exchangeable database...

Student Course

Observed Takes

Friends GradeAge

! ! ! ! !
!
!
!
!
!

×
×

!

!

A

A

B

B

C

C

D

D

E

F

15

15

15

14

14

16
James Lloyd 4



Exchangeable Databases: Summary

...model each object with a latent variable, and each relation with a random function.

(Ui) (Vi)

Observed Takes

Friends GradeAge

(G(Ui,Uj)) (H(Ui,Vj))(F(Ui))

James Lloyd 29



Dynamic Networks

• We observe T slices of a network (Y (1),Y (2), . . . ,Y (T ))

• Assume the structure can be represented by feature matrices (H(1), . . . ,H(T ))



Latent Feature Propagation Models for Dynamic Networks

Latent Feature Propagation

H(1) H(2) H(3) . . . H(T )

Y (1) Y (2) Y (3) . . . Y (T )

Network observations influence future latent features; information

propagates between the observed and latent structures throughout

the network over time

11

• Network structure at time t depends on latent features at time t.

• Network stucture at time t influences latent features at time t+1 : latent feature
information propagates between nodes in the network.

• This seems a very intuitive property for a model of social networks.

(w/ Heaukulani, ICML 2013)



Latent Feature Propagation Models for Dynamic NetworksLatent Feature Propagation

H(1) H(2) H(3) . . . H(T )

Y (1) Y (2) Y (3) . . . Y (T )

Network observations influence future latent features; information

propagates between the observed and latent structures throughout

the network over time

11

Latent Feature Propagation

We use the following model

h
(t+1)
ik |µ(t+1)

ik ∼ Bernoulli
[
σ

(
ck

[
µ

(t+1)
ik − bk

])]

µ
(t+1)
ik = (1 − λi)h

(t)
ik + λi

h
(t)
ik +

∑
j∈ε(i,t) wjh

(t)
jk

1 +
∑

j′∈ε(i,t) wj′

1. λi ∈ [0, 1]: a measure of person i’s susceptibility to the

influence of friends, and (1 − λi) is the corresponding measure

of person i’s social independence;

2. wi ∈ R+: the weight of influence of person i;

3. ck ∈ R+: a scale parameter for the persistence of feature k;

4. bk ∈ R+: a bias parameter for feature k.

10



Latent Feature Propagation Models for Dynamic NetworksLatent Feature Propagation

H(1) H(2) H(3) . . . H(T )

Y (1) Y (2) Y (3) . . . Y (T )

Network observations influence future latent features; information

propagates between the observed and latent structures throughout

the network over time

11

The probability of a link yij given the latent features hi and hj is similar to (Miller
et al, 2010) LRFRM:
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Latent Feature Propagation in Social Networks

dence, though, the applications for such a model can
be far more general in many branches of the biolog-
ical and physical sciences. In this work, we do not
consider self-links, and edges are undirected (i.e., Y
is a symmetric matrix and the diagonal elements are
meaningless). We associate each actor i with a binary
latent feature vector hi of length K, with hik = 1 indi-
cating actor i possesses feature k and hik = 0 indicat-
ing he does not. These latent feature models can also
be viewed as assigning the actors to multiple, overlap-
ping latent clusters (Miller et al., 2009), (Airoldi et al.,
2008), (Gri�ths & Ghahramani, 2011). Entries in Y
are then conditionally independent Bernoulli random
variables, given the latent feature assignments. In our
social network application, we can interpret these la-
tent features as the hobbies or interests of person i.
For example, feature k could mean “plays tennis” and
hik = 1 means person i plays tennis. We will refer
to the set of all feature vectors as the N ⇥ K binary
matrix H where hi is the i-th row of the matrix.

With dynamic network data, we observe a sequence of
networks Y (1), Y (2), . . . , Y (T ), each an observation of
the edges in the network at time slices t = 1, . . . , T . We
assume that the corresponding sequence of latent fea-
tures H(1), . . . , H(T ) comprise a latent Markov chain.
In this framework, the latent features evolve through
time according to some Markov dynamics:

h
(t+1)
ik

���h(t)
ik ⇠ Q

⇣
h

(t)
ik , h

(t+1)
ik

⌘
, (1)

where Q(r, s) is a Markov transition probability of
moving from feature state r to s, which can be a fixed
parameter, feature specific, or otherwise arbitrary, as
long as it defines a Markov transition matrix. In the
context of hidden Markov models, this transition prob-
ability does not depend on any observations. While
the state space of possible latent feature configura-
tions may seem large, models of the form (1) actually
factor the states into a matrix of state variables and
are known as factorial hidden Markov models, within
which tractable inference can be performed (Ghahra-
mani & Jordan, 1997). With an HMM, static snap-
shots of the network are generated independently from
all other observations, given the latent structure H(t)

at time t:

y
(t+1)
ij |h(t+1)

i , h
(t+1)
j ⇠ Bernoulli(⇡ij)

⇡ij = �
⇣
h

(t+1) T
i V h

(t+1)
j + s

⌘
(2)

⌫kk0 ⇠ N (0,�2
⌫).

where ⌫kk0 , k, k0 = 1, . . . , K are the elements of the
K ⇥ K feature-interaction weight matrix V , the fun-
tion �(· ) is the logistic sigmoid �(x) = 1

1+e�x , and

s is a link-bias parameter representing an underly-
ing global probability of a link. Di↵erent variants of
this model can also be considered, for example, a non-
negative and diagonal feature-interaction weight ma-
trix V corresponds to allowing links to only be a↵ected
by the possession of common features, and such an in-
teraction can only increase the probability of a link.

3. A Latent Feature Propagation Model

In the context of social networks, HMMs assume that
social interactions such as friendships are determined
by latent hobbies or interests, and that the evolution
of these interests over time do not depend on past ob-
servations of social interactions. Consider, however,
the following two examples:

• If my friends enjoy playing tennis, I am likely to
start playing recreational tennis.

• If a friend gets me to join the tennis team, the
likelihood of me befriending other tennis players
increases.

In other words, a person’s interests are influenced by
those who are already his friends and, as he adopts
their hobbies, his future friendships are influenced by
his new interests. Viewed in this manner, we wish to
capture the information propagating between the net-
work observations and the latent structure throughout
time. Although we focus on social networks, we con-
jecture that feature propagation may also be useful for
structure in networks studied in other domains. In or-
der to encode the feature propagation assumption, we
model the Markov transition probability for a latent
state as dependent on the observed links at the previ-
ous time point. If we set the initial or “null” states of

the features o↵, i.e., h
(0)
ik , i = 1, . . . , N , k = 1, . . . , K,

then the latent features evolve according to

h
(t+1)
ik |µ(t+1)

ik ⇠ Bernoulli
h
�
⇣
ck

h
µ

(t+1)
ik � bk

i⌘i
(3)

µ
(t+1)
ik = (1 � �i)h

(t)
ik + �i

h
(t)
ik +

P
j2"(i,t) wjh

(t)
jk

1 +
P

j02"(i,t) wj0

where "(i, t) is the set of nodes which are linked to
node i at time t and the parameters for the transition
probability are

1. �i 2 [0, 1]: a measure of person i’s susceptibil-
ity to the influence of friends, and (1 � �i) is the
corresponding measure of person i’s social inde-
pendence;

2. wi 2 R+: the weight of influence of person i;



Prediction of Missing Links
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Figure 1: Log-likelihood of the test edges. Boxplots are over 10 repeats, each
holding out a different 20% of the edges. All results are averaged over 300 samples
drawn from the steady state distribution following a burn-in period. Statistically
significant results are indicated by a (??) based on a T-test at a 0.05 significance
level.

DRIFT: (Foulds et al 2011)
LFRM: (Miller et al 2010)



Prediction of Missing Links
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Figure 2: AUC scores for classifying the test edges in the prediction experiment.
Statistically significant results are indicated by (??) based on a T-test at a 0.05
significance level.



Forecasting Future Networks
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(b) INFOCOM dataset, K = 10

Figure 3: Forecasting a future unseen network. Differences from a naive baseline of
the log-likelihoods of Y (t) after training on Y (1:t−1).



Summary

I discussed the general theory of exchangeable arrays, and how this relates to network
and relational modelling.

Three network models:

• Infinite Latent Attribute Model

• Random Function Model for Arrays and Relations

• Latent Feature Propagation

Theme: probabilistic models with rich latent variable structures are useful for
modelling networks.
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Appendix



Bayesian Machine Learning

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.
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