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Modelling Networks

We are interested in modelling networks.

Biological networks: protein-protein interaction networks
Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

e predict missing links,
e infer latent properties or classes of the objects,

e generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



What is a network?

e A set V of entities (nodes, vertices) and

e A set ) of pairwise relations (links, edges) between the entities

We can represent this as a graph with a binary adjacency matrix Y where element
yi; = 1 represents a link between nodes v; and v;

We'll focus on undirected graphs (i.e. networks of symmetric relations) but much of
what is discussed extends to more general graphs.



What is a model?

Descriptive statistics: identify interesting properties of a network (e.g. degree
distribution)

Predictive or generative model: A model that could generate random networks
and predict missing links, etc.



Erdos-Rényi Model

A very simple model that assumes each link is independent, and present with
probability 7 € [0, 1]

Yi; ~ Bern(m)
This model is easy to analyse but does not have any interesting structure or make

any nontrivial predictions. The only thing one can learn from such a model is the
average density of the network.



Latent Class Models
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The basic idea is to posit that the structure of the network arises from latent (or
hidden) variables associated with each node.

We can think of latent class models as having a single discrete hidden variable
associated with each node.



Latent Class Models
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This corresponds to a clustering of the nodes.
Such models can be used for community detection.

For example, the discrete hidden variables might correspond to the political views
of each individual in a social network.



Latent Class Models
Stochastic Block Model (Nowicki and Snijders, 2001)
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Each node v; has a hidden class from a set of K possible classes: ¢; € {1,..., K}

For all ¢:
c¢; ~ Discrete(py, ... pk)

The probability of a link between two nodes v; and v; depends on their classes:

P(yij = llci = k,c; =) = pre

The parameters of the model are the K x 1 class proportion vector p = (p1, ..., Pk)
and the K x K link probabillity matrix p where pg, € [0, 1].



Latent Class Models
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If we observe a new node, which class do we assign it to?




Nonparametric Latent Class Models
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The new node could belong to one of the previously observed classes, but might
also belong to an as yet unobserved class.

This motivates nonparametric models, where the number of observed classes can
grow with the number of nodes [}

1Nonparametric models are sometimes called infinite models since they allow infinitely many classes, features,
parameters, etc.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)
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Each node v; has a hidden class ¢; € {1,...,00}

For all : cilei, ..., cio1 ~ CRP(«) ﬁ

As before, probability of a link between two nodes v; and v; depends on their classes:
Pyij = 1llci = k,c; = £) = prs

Note that p is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out. Inference done via MCMC. Fairly straightforward to implement.

2CRP, or Chinese Restaurant Process, is an exchangeable distribution on partitions of the integers which is used to
define clustering models with an unbounded number of clusters.




Latent Feature Models

Each node posses some number of latent features.

Alternatively we can think of this model as capturing overlapping clusters or
communities

The link probability depends on the latent features of the two nodes.

The model should be able to accommodate a potentially unbounded (infinite)
number of latent features.



Latent Feature Models
Nonparametric Latent Feature Relational Model (Miller et al 2010)
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Let ;5 = 1 denote whether node 7 has feature k

The latent binary matrix Z is drawn from an IBP distribution: Z|a ~ IBP(«)
The elements of the parameter matrix W are drawn iid from: wre ~ N(0, 0?)
The link probability is:

Pyi; =1W,Z) =0 [ > zik zjs wie
kol

where o(-) is the logistic (sigmoid) function.

3An IBP, or Indian Buffet Process, is an exchangeable distribution over infinite feature allocations—generalising
clustering models to allow overlapping communities.



Infinite Latent Attribute model for network data

¢;=30010004000100...

¢ =21029001080000...

Each object has some number of latent attributes
Each attribute can have some number of discrete values
Probability of a link between object ¢ and ;5 depends on the attributes of 7 and j:

P(yi; = 1|z;,2;,C,W) = O'(Z zimzjmwgnncg@ -+ s)

m

Potentially unbounded number of attributes, and values per attribute®
Generalises both the IRM and the NLFRM.

(w/ Konstantina Palla, David Knowles, ICML 2012)

“An IBP is used for the attribute matrix, Z and a CRP for the values of each attribute, C



Infinite Latent Attribute model for network data
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Example: a student friendship network

e Each student might be involved in some activities or have some features:
person_i has attributes (College, sport, politics)

person_j has attributes (College, politics, religion, music)

e Each attribute has some values:
person_i = (College=Trinity, sport=squash, politics=LibDem)

person_j = (College=Kings, politics=LibDem, religion=Catholic, music=choir)

e Prob. of link between person 7 and j depends on their attributes and values.

e The attributes and values are not observed—they are learned from the network.



Infinite Latent Attribute: Results

Test error rates (missing link prediction) on NIPS coauthorship, and gene interaction
prediction benchmark datasets.

IRM LFIRM ILA
NIPS  0.0440 4+ 0.0014 0.0228 4+ 0.0041 0.0106 + 0.0007
Genes 0.3608 £ 0.0031 0.2661 £ 0.0086 0.0735 £ 0.0047

IRM: (Kemp and Tenenbaum 2006)
LFIRM: (Miller, Griffiths and Jordan 2010)



Exchangeable Sequences

Exchangeable sequence:
A sequence is exchangeable if its joint distribution is invariant under arbitrary
permutation of the indices:

(X1, X2, ) 2 (Xn(1), Xn(2), o) V7 € S

de Finetti’'s Theorem:
(X;)ien is exchangeable if and only if there exists a random probability measure ©
on X such that X1, X5,...|® ~ iid ©

Interpretation:

Any probabilistic model of data which assumes that the order of the data does not
matter, can be expressed as a Bayesian mixture of iid models. Note that ©® may in
general need to be infinite dimensional (i.e. nonparameteric).



Exchangeable Arrays

Exchangeable arrays: An array X = (X;,); jen is called an exchangeable array if

(Xij) i (Xﬂ(ﬂw(j)) for every m ¢ SOO.




Exchangeable Arrays

Exchangeable arrays: An array X = (X;,); jen is called an exchangeable array if

(X@j) i (Xﬂ(i)ﬂ(j)) for every m ¢ SOO.

Aldous-Hoover Theorem:

A random matrix (X;;) is exchangeable if and only if there is a random (measurable)

function F' : [0,1]> — X such that (X ) L (F(U;,U;,U;;)) for every collection

(Uz')iEN and (Uz'j)igjeN of i.i.d. Uniform[O, 1] random variables, where sz‘ = Uz'j for
j<iéeN.
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Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns

(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the

observations.




Random Function Model

We develop a nonparametric probabilistic model for arrays and graphs that makes
explicit the Aldous Hoover representation:
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O ~ GP(0,k) (1)
Ui,Us,... ~ Uniforml0, 1] (2)
Wij = ©O(U;,Uj) (3)
Xi; ~ P[|Wy] (4)

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)



Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.

Graph data
Random function model © ~ GP(0,k)
Latent class Wi; = myy whereU; € {1,..., K}
IRM Wi; = myuy, whereU; € {1,...,00}
Latent distance Wi = —|U;—Uj
Eigenmodel Wi = UAU;
LFRM Wij = UZ/AU] where U; € {O, 1}00
ILA Wy = Yulu v, Afy, where Ui € {0, 00}
SMGB © ~/ QP (O, K1 & KJQ)

Real-valued array data

Random function model © ~ GP(0,k)

Mondrian process based © = piece-wise constant random function
PMF Wi, = UV,

GPLVM © ~ GP(0,k®)9)




Random Function Model: Results

Data set
Latent dimensions

AUC results

High school NIPS
1 2 3 1 2 3

Protein
1 2 3

PMF
Eigenmodel
GPLVM
RFM

0.747 0.792 0.792 0.729 0.789 0.820
0.742 0.806 0.806 0.789 0.818 0.845
0.744 0.775 0.782 0.888 0.876 0.883
0.815 0.827 0.820 0.907 0.914 0.919

0.787 0.810 0.841
0.805 0.866 0.882
0.877 0.883 0.873
0.903 0.910 0.912



Relational Data

Networks are special case of relational data.
More generally we should think about modelling databases containing multiple
types of entitites, multiple relations, and features of entities (covariates).

{ Student { Course }

l

Observed
15 v v v v v A
15 v X E A
15 v X C D B F
14 v v D
14 v
16 v v B C

James Lloyd

Do the Aldous-Hoover class of representations extend to such relational data?



Extension: Relational Data wth Covariate Features

Suppose that in addition to a social network (X;;) we have side information in the
form of covariates for the users (C;).

Corollary

Let (X;j)ijen and (Ci)ien be random variables in X and X' respectively. Then the
following are equivalent:

d

i (Xy), (Ci) = (Xp(iyp()s (Coiy) for every p € Scc.

ii. There are random measurable functions F : [0,1]° — X and G : [0,1] — X’

such that
(Xi')v (Ci) = (F(Uia Ujv Uij))v (G(Ui))a

where (U;)ien and (Ujj)i<jen are i.i.d. Uniform|0, 1] random variables and
Ui = Ujforj<ieN.

(w/ James Lloyd, Dan Roy, Peter Orbanz)



What about Multiple Relations?

Student Course
Observed
v v v v VY A
v X E
v X C D B
v v D
v
v v B C




Extension: Two Arrays

Consider rating data (X;;) with users i and items j, and a social network (Si) over
users i, k.

Corollary

The following are equivalent

. d
L. (Xi')a (Sik) — (Xp(i)p’(i))a (Sp(i)p(k))for every pap/ € Soo-

11. There exist random functions F, G such that
d
(Xij)v (Sik) — (F(UH Vj7 Wij))? (G(Ul7 Uk, Ui ))

where (Ui)ieN, (Vj)jeN, (Wij)i,jEN and (Uik)igkeN are 1.1.d. Uniform[O, 1]
random variables, and Uy; = Uy, for k < i € N,

In fact we have extensions to arbitrary databases with R relations and O objects.



Exchangeable Databases: Summary

To model an exchangeable database...

N |

Observed
Aee
15 v v v v v A
15 v X E
15 v X C D B
14 v v D
14 v
16 v v B C




Exchangeable Databases: Summary

...model each object with a latent variable, and each relation with a random function.

{ (Ui)

Aee CErients >

(F(U)) (G(Ui, Uj)) (H(U;,V)))




Dynamic Networks

e We observe T slices of a network (Y1), Y2 vy (1)

e Assume the structure can be represented by feature matrices (H), ... H(T))



Latent Feature Propagation Models for Dynamic Networks
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e Network structure at time t depends on latent features at time ¢.

e Network stucture at time ¢ influences latent features at time ¢t + 1 : latent feature
information propagates between nodes in the network.

e This seems a very intuitive property for a model of social networks.

(w/ Heaukulani, ICML 2013)



Latent Feature Propagation Models for Dynamic Networks

We use the following model

hg?l)mg?l) ~ Bernoulli [0 (ck [,LLEZJFD = bk} )}

¢ t
hgkz) + Zj@s(z’,t) wjhglg

(t+1) (1)
M = (1 - )‘i)hz’ + i
" " L4 > ireein Wir

1. A\; € [0,1]: a measure of person i’s susceptibility to the
influence of friends, and (1 — ;) is the corresponding measure

of person i’s social independence;
2. w; € Ry: the weight of influence of person ;
3. ¢ € Ry: a scale parameter for the persistence of feature k;

4. b, € Ry: a bias parameter for feature k.



Latent Feature Propagation Models for Dynamic Networks
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The probability of a link y;; given the latent features h; and h; is similar to (Miller
et al, 2010) LRFRM:

(D) |h(t+1)7 p (D)

Tij =0 (hgt“) TVR(T 4 3)

Vi ~ N(O, 03)

~ Bernoulli(7;,)



Prediction of Missing Links
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Figure 1: Log-likelihood of the test edges. Boxplots are over 10 repeats, each
holding out a different 20% of the edges. All results are averaged over 300 samples
drawn from the steady state distribution following a burn-in period. Statistically

significant results are indicated by a (%x) based on a T-test at a 0.05 significance
level.

DRIFT: (Foulds et al 2011)
LFRM: (Miller et al 2010)



Prediction of Missing Links
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Figure 2: AUC scores for classifying the test edges in the prediction experiment.
Statistically significant results are indicated by (x%x) based on a T-test at a 0.05

significance level.



log-likel. difference from baseline
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Forecasting Future Networks
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Figure 3: Forecasting a future unseen network. Differences from a naive baseline of
the log-likelihoods of Y () after training on Y (1:#—1).



Summary

| discussed the general theory of exchangeable arrays, and how this relates to network
and relational modelling.

Three network models:

e Infinite Latent Attribute Model
e Random Function Model for Arrays and Relations

e |Latent Feature Propagation

Theme: probabilistic models with rich latent variable structures are useful for
modelling networks.
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Appendix



Bayesian Machine Learning

Everything follows from two simple rules:
Sum rule: P(x)=>_, P(x,y)
Product rule: P(x,y) = P(x)P(y|x)

P(D|0,m) likelihood of parameters 6 in model m
P0|D,m) = P(D|0, m)P(0]m) P(0|m) prior probability of 0
P(D|m) P(0|D, m) posterior of 6 given data D
Prediction:
P(z|D,m) = /P(:L']H,D, m)P(0|D,m)dd
Model Comparison:
P(Dlm)P(m)
P(m|D) =

P(Dlm) = / P(D0, m)P(6]m) o



Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.
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