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Modules, groups, or communities




Statistical inference

« Suppose we have measured a set of n numbers x.

which we believe to be drawn from a normal
distribution:




e The probability of making a measurement is

0 = g (<)

e The probability of measuring the whole set is
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e This is the likelihood of the data. Its logarithm is

o%:—%nlogbr— nloga — Z(xz ,”)2



e We take the log-likelihood
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e Similarly, take

l n
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and differentiate with respect to o*:

or




Block models and inference

* We treat the problem as one of statistical inference

1
e We create a model of

community structure Wi
then fit it to the

observed data. Such

models are called block

models in the literature. 2




* The probability that this model generates a given

observed network is

A
(wé{f(‘%’ j) g

ij

* We want to find the set of parameters that maximizes
this, or equivalently maximizes the logarithm.
Neglecting constants the logarithm is

log P(Glw, g) =Y (myslogwys — npngwys).
rs
« Here m,, is the number of edges between groups r and

s and n, is the numbers of vertices in group r



Maximizing this expression first with respect to w, we
get w, = m, /nn_and substituting back into the log-

likelihood gives

L(G|g) = me log

nMg

Now we just have to maximize this expression with
respect to the group memberships, and we have our
answer

Actually, we need to do a little more — it only works
right if you also correct for degree

This turns the problem of detecting communities into
an optimization problem. A simple vertex-moving
heuristic works well for small networks.



Example: Student club







Blog network

USspolitical weblogs

4

e Adamic and Glance 2005
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Correcting for degree
(Karrer and Newman 2011)

* The solution is to build the correct dependence on
degree into the block model:

A
(9'5 ijLQE'(Qj' ) U

P(G‘wafg) — H Al exp(_gfgngfgj)
1] 'J*

* The overall constant is fixed by the normalization

condition:
Zeicsgf’r — 1
[



Correcting for degree

* The log-likelihood, ignoring constants, is then
log P(G|O,w,g) = 2 Zkf log 0; + Z(mrs log wys — wrs).
{ rs

* The maximum likelihood parameter values are:
ki
Y kidgg:’

* Which gives a log-likelihood objective function thus:

L(G|g) = Zm,q log kr = ) Kkiby g,
1

Wys — Myg

Ky Ks
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Overlapping groups

(Ball, Karrer, and Newman 2011)

* A vertex can belong to more than one group
- Family
- Coworkers
- Friends you know now
- Friends from school or university
- “Friends” on Facebook

« We can extend the 6 parameters in our previous
model to 8, which is i's degree in group r



* Our log-likelihood now looks like:

log P(G|6,w) = Z Ajilog (X5 0i0iswrs) — Y 0ir0jswrs

l] L]rs

* In principle, we can now just differentiate this to
maximize, but we can do better than that

* Suppose you know the values of the parameters.
Then:

“(?’ S) o Qirejswrs
KA D rs Girejswrs




And given this we can calculate the values of the
parameters:

Yis Aijij (1, 9)
Yijs Aijdij(1,8)”

0, = Wrs — ZAijq:'j(r;S)
]

0r0srs

i(r,s) = /

7 ) D rs Girejswrs

This gives a classic expectation-maximization (EM)
algorithm: choose a random starting condition and
iterate to convergence.

Each iteration takes O(m) time

Scales to millions of nodes
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Vertex classification
(Newman and Leicht 2008)

We can define a very broad set of possible group
structures for networks:




Definition of the model

Directed case:

71, = probability of being in group r
and

0,; = probability of a link to vertex i

These satisty

C
Y =1,
r=1

1
0, =1.
=1

[



Likelihood and log-likelihood

The likelihood is
Pr(A,gl|r,0) = Pr(Alg, ,0) Pr(gl|m,6)

Here
Pr(Alg, 7, 6) H9 Pr(glm0) =1 I
So i Ay
Pr(A,g|m,0) =] ]|, Hgﬂfjf

1L ]

L =1InPr(A, g|m,0) = Z[ln e, - ) Ai Mgf,j}
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EM algorithm

* The EM equations now look like this:

1 X Aijir
ST ;qm o = i kiqir
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* The derivation is more complicated for the undirected
case, but the equations end up the same

dir












Network hierarchy

(Clauset, Moore, and Newman 2008)




Network hierarchy




 Generate consensus hierarchies:







Ranking and status
(Ball and Newman 2013)

Rank



Rankings from network inference

* Assume a ranking and ditferent probabilities for the
directed and bidirectional edges

* We use an EM algorithm to calculate both self-
consistently

e From this we learn:

- The ranking of the nodes

- The separate probability functions for directed and
undirected edges
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Graph spectra

* A network (or graph) can be represented by an

adjacency matrix A:
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Centrality

* Which is the most important node in a network?

- Degree centrality: you get one point for each
neighbor

- Better: you get points in proportion to the sum of
your neighbor's points (Bonacich 1987)

1
—1 ~1
X = A Z Xj=A Z AjiXj
jeN (i) j=1

or
Ax = AX






Example: Animal network
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Beliet propagation for block models

* Decelle, Krzakala, Moore, and Zdeborova (2010)
developed belief propagation for the maximum
likelihood fit:

T 1 I LM’H

ke A (i) S
k#]

A
w}'bzfc B

» Each node assesses its own probabilities {/'~/ to belong

to each group based on the probabilities of its
neighbors



Beliet propagation for block models

* Efficient algorithm for the stochastic block model

— Scales to millions of nodes

* Can be linearized to give a simpler algorithm, faster still

- Equivalent to finding the leading eigenvector of a
new matrix, the non-backtracking matrix

- Gives better results for sparse networks

- Appears to work all the way down to the limit ot
detectability
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Non-backtracking matrix

Second eigenvector gives a good estimate ot
community structure

First eigenvector gives an improved estimate of
eigenvector centrality

First eigenvalue gives the percolation threshold

Also appears in the pair approximation for epidemic
models on networks

Also appears in iterative methods for calculating
network spectra
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